用于全学习者支持的大型语言模型:机遇与挑战。

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Artificial Intelligence Pub Date : 2024-10-15 eCollection Date: 2024-01-01 DOI:10.3389/frai.2024.1460364
Amogh Mannekote, Adam Davies, Juan D Pinto, Shan Zhang, Daniel Olds, Noah L Schroeder, Blair Lehman, Diego Zapata-Rivera, ChengXiang Zhai
{"title":"用于全学习者支持的大型语言模型:机遇与挑战。","authors":"Amogh Mannekote, Adam Davies, Juan D Pinto, Shan Zhang, Daniel Olds, Noah L Schroeder, Blair Lehman, Diego Zapata-Rivera, ChengXiang Zhai","doi":"10.3389/frai.2024.1460364","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, large language models (LLMs) have seen rapid advancement and adoption, and are increasingly being used in educational contexts. In this perspective article, we explore the open challenge of leveraging LLMs to create personalized learning environments that support the \"whole learner\" by modeling and adapting to both cognitive and non-cognitive characteristics. We identify three key challenges toward this vision: (1) improving the interpretability of LLMs' representations of whole learners, (2) implementing adaptive technologies that can leverage such representations to provide tailored pedagogical support, and (3) authoring and evaluating LLM-based educational agents. For interpretability, we discuss approaches for explaining LLM behaviors in terms of their internal representations of learners; for adaptation, we examine how LLMs can be used to provide context-aware feedback and scaffold non-cognitive skills through natural language interactions; and for authoring, we highlight the opportunities and challenges involved in using natural language instructions to specify behaviors of educational agents. Addressing these challenges will enable personalized AI tutors that can enhance learning by accounting for each student's unique background, abilities, motivations, and socioemotional needs.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1460364"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11518847/pdf/","citationCount":"0","resultStr":"{\"title\":\"Large language models for whole-learner support: opportunities and challenges.\",\"authors\":\"Amogh Mannekote, Adam Davies, Juan D Pinto, Shan Zhang, Daniel Olds, Noah L Schroeder, Blair Lehman, Diego Zapata-Rivera, ChengXiang Zhai\",\"doi\":\"10.3389/frai.2024.1460364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent years, large language models (LLMs) have seen rapid advancement and adoption, and are increasingly being used in educational contexts. In this perspective article, we explore the open challenge of leveraging LLMs to create personalized learning environments that support the \\\"whole learner\\\" by modeling and adapting to both cognitive and non-cognitive characteristics. We identify three key challenges toward this vision: (1) improving the interpretability of LLMs' representations of whole learners, (2) implementing adaptive technologies that can leverage such representations to provide tailored pedagogical support, and (3) authoring and evaluating LLM-based educational agents. For interpretability, we discuss approaches for explaining LLM behaviors in terms of their internal representations of learners; for adaptation, we examine how LLMs can be used to provide context-aware feedback and scaffold non-cognitive skills through natural language interactions; and for authoring, we highlight the opportunities and challenges involved in using natural language instructions to specify behaviors of educational agents. Addressing these challenges will enable personalized AI tutors that can enhance learning by accounting for each student's unique background, abilities, motivations, and socioemotional needs.</p>\",\"PeriodicalId\":33315,\"journal\":{\"name\":\"Frontiers in Artificial Intelligence\",\"volume\":\"7 \",\"pages\":\"1460364\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11518847/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frai.2024.1460364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1460364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

近年来,大型语言模型(LLMs)得到了快速发展和采用,并越来越多地应用于教育领域。在这篇视角文章中,我们探讨了如何利用 LLMs 创建个性化学习环境,通过对认知和非认知特征进行建模和调整,为 "整个学习者 "提供支持这一公开挑战。我们确定了实现这一愿景的三个关键挑战:(1) 提高 LLM 对整个学习者的表征的可解释性;(2) 实施可利用此类表征提供定制教学支持的自适应技术;(3) 编写和评估基于 LLM 的教育代理。在可解释性方面,我们讨论了根据学习者的内部表征来解释 LLM 行为的方法;在适应性方面,我们研究了如何利用 LLM 通过自然语言交互来提供情境感知反馈和非认知技能支架;在创作方面,我们强调了使用自然语言指令来指定教育代理行为所涉及的机遇和挑战。应对这些挑战将使个性化人工智能导师能够通过考虑每个学生的独特背景、能力、动机和社会情感需求来提高学习效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large language models for whole-learner support: opportunities and challenges.

In recent years, large language models (LLMs) have seen rapid advancement and adoption, and are increasingly being used in educational contexts. In this perspective article, we explore the open challenge of leveraging LLMs to create personalized learning environments that support the "whole learner" by modeling and adapting to both cognitive and non-cognitive characteristics. We identify three key challenges toward this vision: (1) improving the interpretability of LLMs' representations of whole learners, (2) implementing adaptive technologies that can leverage such representations to provide tailored pedagogical support, and (3) authoring and evaluating LLM-based educational agents. For interpretability, we discuss approaches for explaining LLM behaviors in terms of their internal representations of learners; for adaptation, we examine how LLMs can be used to provide context-aware feedback and scaffold non-cognitive skills through natural language interactions; and for authoring, we highlight the opportunities and challenges involved in using natural language instructions to specify behaviors of educational agents. Addressing these challenges will enable personalized AI tutors that can enhance learning by accounting for each student's unique background, abilities, motivations, and socioemotional needs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信