Max Menssen, Martina Dammann, Firas Fneish, David Ellenberger, Frank Schaarschmidt
{"title":"过度分散泊松数据的预测区间及其在医疗和临床前质量控制中的应用","authors":"Max Menssen, Martina Dammann, Firas Fneish, David Ellenberger, Frank Schaarschmidt","doi":"10.1002/pst.2447","DOIUrl":null,"url":null,"abstract":"<p><p>In pre-clinical and medical quality control, it is of interest to assess the stability of the process under monitoring or to validate a current observation using historical control data. Classically, this is done by the application of historical control limits (HCL) graphically displayed in control charts. In many applications, HCL are applied to count data, for example, the number of revertant colonies (Ames assay) or the number of relapses per multiple sclerosis patient. Count data may be overdispersed, can be heavily right-skewed and clusters may differ in cluster size or other baseline quantities (e.g., number of petri dishes per control group or different length of monitoring times per patient). Based on the quasi-Poisson assumption or the negative-binomial distribution, we propose prediction intervals for overdispersed count data to be used as HCL. Variable baseline quantities are accounted for by offsets. Furthermore, we provide a bootstrap calibration algorithm that accounts for the skewed distribution and achieves equal tail probabilities. Comprehensive Monte-Carlo simulations assessing the coverage probabilities of eight different methods for HCL calculation reveal, that the bootstrap calibrated prediction intervals control the type-1-error best. Heuristics traditionally used in control charts (e.g., the limits in Shewhart c- or u-charts or the mean ± 2 SD) fail to control a pre-specified coverage probability. The application of HCL is demonstrated based on data from the Ames assay and for numbers of relapses of multiple sclerosis patients. The proposed prediction intervals and the algorithm for bootstrap calibration are publicly available via the R package predint.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction Intervals for Overdispersed Poisson Data and Their Application in Medical and Pre-Clinical Quality Control.\",\"authors\":\"Max Menssen, Martina Dammann, Firas Fneish, David Ellenberger, Frank Schaarschmidt\",\"doi\":\"10.1002/pst.2447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In pre-clinical and medical quality control, it is of interest to assess the stability of the process under monitoring or to validate a current observation using historical control data. Classically, this is done by the application of historical control limits (HCL) graphically displayed in control charts. In many applications, HCL are applied to count data, for example, the number of revertant colonies (Ames assay) or the number of relapses per multiple sclerosis patient. Count data may be overdispersed, can be heavily right-skewed and clusters may differ in cluster size or other baseline quantities (e.g., number of petri dishes per control group or different length of monitoring times per patient). Based on the quasi-Poisson assumption or the negative-binomial distribution, we propose prediction intervals for overdispersed count data to be used as HCL. Variable baseline quantities are accounted for by offsets. Furthermore, we provide a bootstrap calibration algorithm that accounts for the skewed distribution and achieves equal tail probabilities. Comprehensive Monte-Carlo simulations assessing the coverage probabilities of eight different methods for HCL calculation reveal, that the bootstrap calibrated prediction intervals control the type-1-error best. Heuristics traditionally used in control charts (e.g., the limits in Shewhart c- or u-charts or the mean ± 2 SD) fail to control a pre-specified coverage probability. The application of HCL is demonstrated based on data from the Ames assay and for numbers of relapses of multiple sclerosis patients. The proposed prediction intervals and the algorithm for bootstrap calibration are publicly available via the R package predint.</p>\",\"PeriodicalId\":19934,\"journal\":{\"name\":\"Pharmaceutical Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Statistics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/pst.2447\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pst.2447","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Prediction Intervals for Overdispersed Poisson Data and Their Application in Medical and Pre-Clinical Quality Control.
In pre-clinical and medical quality control, it is of interest to assess the stability of the process under monitoring or to validate a current observation using historical control data. Classically, this is done by the application of historical control limits (HCL) graphically displayed in control charts. In many applications, HCL are applied to count data, for example, the number of revertant colonies (Ames assay) or the number of relapses per multiple sclerosis patient. Count data may be overdispersed, can be heavily right-skewed and clusters may differ in cluster size or other baseline quantities (e.g., number of petri dishes per control group or different length of monitoring times per patient). Based on the quasi-Poisson assumption or the negative-binomial distribution, we propose prediction intervals for overdispersed count data to be used as HCL. Variable baseline quantities are accounted for by offsets. Furthermore, we provide a bootstrap calibration algorithm that accounts for the skewed distribution and achieves equal tail probabilities. Comprehensive Monte-Carlo simulations assessing the coverage probabilities of eight different methods for HCL calculation reveal, that the bootstrap calibrated prediction intervals control the type-1-error best. Heuristics traditionally used in control charts (e.g., the limits in Shewhart c- or u-charts or the mean ± 2 SD) fail to control a pre-specified coverage probability. The application of HCL is demonstrated based on data from the Ames assay and for numbers of relapses of multiple sclerosis patients. The proposed prediction intervals and the algorithm for bootstrap calibration are publicly available via the R package predint.
期刊介绍:
Pharmaceutical Statistics is an industry-led initiative, tackling real problems in statistical applications. The Journal publishes papers that share experiences in the practical application of statistics within the pharmaceutical industry. It covers all aspects of pharmaceutical statistical applications from discovery, through pre-clinical development, clinical development, post-marketing surveillance, consumer health, production, epidemiology, and health economics.
The Journal is both international and multidisciplinary. It includes high quality practical papers, case studies and review papers.