纠正癌症进展模型中的观察偏差

IF 1.4 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS
Rudolf Schill, Maren Klever, Andreas Lösch, Y Linda Hu, Stefan Vocht, Kevin Rupp, Lars Grasedyck, Rainer Spang, Niko Beerenwinkel
{"title":"纠正癌症进展模型中的观察偏差","authors":"Rudolf Schill, Maren Klever, Andreas Lösch, Y Linda Hu, Stefan Vocht, Kevin Rupp, Lars Grasedyck, Rainer Spang, Niko Beerenwinkel","doi":"10.1089/cmb.2024.0666","DOIUrl":null,"url":null,"abstract":"<p><p>Tumor progression is driven by the accumulation of genetic alterations, including both point mutations and copy number changes. Understanding the temporal sequence of these events is crucial for comprehending the disease but is not directly discernible from cross-sectional genomic data. Cancer progression models, including Mutual Hazard Networks (MHNs), aim to reconstruct the dynamics of tumor progression by learning the causal interactions between genetic events based on their co-occurrence patterns in cross-sectional data. Here, we highlight a commonly overlooked bias in cross-sectional datasets that can distort progression modeling. Tumors become clinically detectable when they cause symptoms or are identified through imaging or tests. Detection factors, such as size, inflammation (fever, fatigue), and elevated biochemical markers, are influenced by genomic alterations. Ignoring these effects leads to \"conditioning on a collider\" bias, where events making the tumor more observable appear anticorrelated, creating false suppressive effects or masking promoting effects among genetic events. We enhance MHNs by incorporating the effects of genetic progression events on the inclusion of a tumor in a dataset, thus correcting for collider bias. We derive an efficient tensor formula for the likelihood function and apply it to two datasets from the MSK-IMPACT study. In colon adenocarcinoma, we observe a significantly higher rate of clinical detection for TP53-positive tumors, while in lung adenocarcinoma, the same is true for EGFR-positive tumors. Compared to classical MHNs, this approach eliminates several spurious suppressive interactions and uncovers multiple promoting effects.</p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":"31 10","pages":"927-945"},"PeriodicalIF":1.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correcting for Observation Bias in Cancer Progression Modeling.\",\"authors\":\"Rudolf Schill, Maren Klever, Andreas Lösch, Y Linda Hu, Stefan Vocht, Kevin Rupp, Lars Grasedyck, Rainer Spang, Niko Beerenwinkel\",\"doi\":\"10.1089/cmb.2024.0666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tumor progression is driven by the accumulation of genetic alterations, including both point mutations and copy number changes. Understanding the temporal sequence of these events is crucial for comprehending the disease but is not directly discernible from cross-sectional genomic data. Cancer progression models, including Mutual Hazard Networks (MHNs), aim to reconstruct the dynamics of tumor progression by learning the causal interactions between genetic events based on their co-occurrence patterns in cross-sectional data. Here, we highlight a commonly overlooked bias in cross-sectional datasets that can distort progression modeling. Tumors become clinically detectable when they cause symptoms or are identified through imaging or tests. Detection factors, such as size, inflammation (fever, fatigue), and elevated biochemical markers, are influenced by genomic alterations. Ignoring these effects leads to \\\"conditioning on a collider\\\" bias, where events making the tumor more observable appear anticorrelated, creating false suppressive effects or masking promoting effects among genetic events. We enhance MHNs by incorporating the effects of genetic progression events on the inclusion of a tumor in a dataset, thus correcting for collider bias. We derive an efficient tensor formula for the likelihood function and apply it to two datasets from the MSK-IMPACT study. In colon adenocarcinoma, we observe a significantly higher rate of clinical detection for TP53-positive tumors, while in lung adenocarcinoma, the same is true for EGFR-positive tumors. Compared to classical MHNs, this approach eliminates several spurious suppressive interactions and uncovers multiple promoting effects.</p>\",\"PeriodicalId\":15526,\"journal\":{\"name\":\"Journal of Computational Biology\",\"volume\":\"31 10\",\"pages\":\"927-945\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/cmb.2024.0666\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2024.0666","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

肿瘤的发展是由基因改变(包括点突变和拷贝数变化)的累积驱动的。了解这些事件的时间顺序对于理解疾病至关重要,但从横截面基因组数据中却无法直接辨别。癌症进展模型,包括相互危害网络(MHNs),旨在根据横断面数据中基因事件的共现模式,学习基因事件之间的因果相互作用,从而重建肿瘤进展的动态过程。在此,我们强调横断面数据集中一个常被忽视的偏差,它可能会扭曲进展建模。当肿瘤引起症状或通过成像或检测发现肿瘤时,就可以在临床上检测到肿瘤。肿瘤大小、炎症(发热、疲劳)和生化指标升高等检测因素会受到基因组改变的影响。忽略这些影响会导致 "对撞机上的条件 "偏差,在这种情况下,使肿瘤更易观察到的事件似乎是反相关的,从而产生错误的抑制效应或掩盖基因事件之间的促进效应。我们将遗传进展事件对肿瘤纳入数据集的影响纳入 MHN,从而纠正对撞机偏差,从而增强 MHN。我们为似然函数推导了一个高效的张量公式,并将其应用于 MSK-IMPACT 研究的两个数据集。在结肠腺癌中,我们观察到 TP53 阳性肿瘤的临床检测率明显更高,而在肺腺癌中,表皮生长因子受体(EGFR)阳性肿瘤的临床检测率也是如此。与传统的 MHN 相比,这种方法消除了一些虚假的抑制性相互作用,并发现了多种促进作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Correcting for Observation Bias in Cancer Progression Modeling.

Tumor progression is driven by the accumulation of genetic alterations, including both point mutations and copy number changes. Understanding the temporal sequence of these events is crucial for comprehending the disease but is not directly discernible from cross-sectional genomic data. Cancer progression models, including Mutual Hazard Networks (MHNs), aim to reconstruct the dynamics of tumor progression by learning the causal interactions between genetic events based on their co-occurrence patterns in cross-sectional data. Here, we highlight a commonly overlooked bias in cross-sectional datasets that can distort progression modeling. Tumors become clinically detectable when they cause symptoms or are identified through imaging or tests. Detection factors, such as size, inflammation (fever, fatigue), and elevated biochemical markers, are influenced by genomic alterations. Ignoring these effects leads to "conditioning on a collider" bias, where events making the tumor more observable appear anticorrelated, creating false suppressive effects or masking promoting effects among genetic events. We enhance MHNs by incorporating the effects of genetic progression events on the inclusion of a tumor in a dataset, thus correcting for collider bias. We derive an efficient tensor formula for the likelihood function and apply it to two datasets from the MSK-IMPACT study. In colon adenocarcinoma, we observe a significantly higher rate of clinical detection for TP53-positive tumors, while in lung adenocarcinoma, the same is true for EGFR-positive tumors. Compared to classical MHNs, this approach eliminates several spurious suppressive interactions and uncovers multiple promoting effects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Biology
Journal of Computational Biology 生物-计算机:跨学科应用
CiteScore
3.60
自引率
5.90%
发文量
113
审稿时长
6-12 weeks
期刊介绍: Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics. Journal of Computational Biology coverage includes: -Genomics -Mathematical modeling and simulation -Distributed and parallel biological computing -Designing biological databases -Pattern matching and pattern detection -Linking disparate databases and data -New tools for computational biology -Relational and object-oriented database technology for bioinformatics -Biological expert system design and use -Reasoning by analogy, hypothesis formation, and testing by machine -Management of biological databases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信