专家指导的大型语言模型为精准肿瘤学提供临床决策支持。

IF 5.3 2区 医学 Q1 ONCOLOGY
JCO precision oncology Pub Date : 2024-10-01 Epub Date: 2024-10-30 DOI:10.1200/PO-24-00478
Jacqueline Lammert, Tobias Dreyer, Sonja Mathes, Leonid Kuligin, Kai J Borm, Ulrich A Schatz, Marion Kiechle, Alisa M Lörsch, Johannes Jung, Sebastian Lange, Nicole Pfarr, Anna Durner, Kristina Schwamborn, Christof Winter, Dyke Ferber, Jakob Nikolas Kather, Carolin Mogler, Anna L Illert, Maximilian Tschochohei
{"title":"专家指导的大型语言模型为精准肿瘤学提供临床决策支持。","authors":"Jacqueline Lammert, Tobias Dreyer, Sonja Mathes, Leonid Kuligin, Kai J Borm, Ulrich A Schatz, Marion Kiechle, Alisa M Lörsch, Johannes Jung, Sebastian Lange, Nicole Pfarr, Anna Durner, Kristina Schwamborn, Christof Winter, Dyke Ferber, Jakob Nikolas Kather, Carolin Mogler, Anna L Illert, Maximilian Tschochohei","doi":"10.1200/PO-24-00478","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Rapidly expanding medical literature challenges oncologists seeking targeted cancer therapies. General-purpose large language models (LLMs) lack domain-specific knowledge, limiting their clinical utility. This study introduces the LLM system Medical Evidence Retrieval and Data Integration for Tailored Healthcare (MEREDITH), designed to support treatment recommendations in precision oncology. Built on <i>Google's Gemini Pro</i> LLM, MEREDITH uses <i>retrieval-augmented generation</i> and <i>chain of thought</i>.</p><p><strong>Methods: </strong>We evaluated MEREDITH on 10 publicly available fictional oncology cases with iterative feedback from a molecular tumor board (MTB) at a major German cancer center. Initially limited to <i>PubMed</i>-indexed literature (draft system), MEREDITH was enhanced to incorporate clinical studies on drug response within the specific tumor type, trial databases, drug approval status, and oncologic guidelines. The MTB provided a benchmark with manually curated treatment recommendations and assessed the clinical relevance of LLM-generated options (qualitative assessment). We measured semantic cosine similarity between LLM suggestions and clinician responses (quantitative assessment).</p><p><strong>Results: </strong>MEREDITH identified a broader range of treatment options (median 4) compared with MTB experts (median 2). These options included therapies on the basis of preclinical data and combination treatments, expanding the treatment possibilities for consideration by the MTB. This broader approach was achieved by incorporating a curated medical data set that contextualized molecular targetability. Mirroring the approach MTB experts use to evaluate MTB cases improved the LLM's ability to generate relevant suggestions. This is supported by high concordance between LLM suggestions and expert recommendations (94.7% for the enhanced system) and a significant increase in semantic similarity from the draft to the enhanced system (from 0.71 to 0.76, <i>P</i> = .01).</p><p><strong>Conclusion: </strong>Expert feedback and domain-specific data augment LLM performance. Future research should investigate responsible LLM integration into real-world clinical workflows.</p>","PeriodicalId":14797,"journal":{"name":"JCO precision oncology","volume":"8 ","pages":"e2400478"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Expert-Guided Large Language Models for Clinical Decision Support in Precision Oncology.\",\"authors\":\"Jacqueline Lammert, Tobias Dreyer, Sonja Mathes, Leonid Kuligin, Kai J Borm, Ulrich A Schatz, Marion Kiechle, Alisa M Lörsch, Johannes Jung, Sebastian Lange, Nicole Pfarr, Anna Durner, Kristina Schwamborn, Christof Winter, Dyke Ferber, Jakob Nikolas Kather, Carolin Mogler, Anna L Illert, Maximilian Tschochohei\",\"doi\":\"10.1200/PO-24-00478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Rapidly expanding medical literature challenges oncologists seeking targeted cancer therapies. General-purpose large language models (LLMs) lack domain-specific knowledge, limiting their clinical utility. This study introduces the LLM system Medical Evidence Retrieval and Data Integration for Tailored Healthcare (MEREDITH), designed to support treatment recommendations in precision oncology. Built on <i>Google's Gemini Pro</i> LLM, MEREDITH uses <i>retrieval-augmented generation</i> and <i>chain of thought</i>.</p><p><strong>Methods: </strong>We evaluated MEREDITH on 10 publicly available fictional oncology cases with iterative feedback from a molecular tumor board (MTB) at a major German cancer center. Initially limited to <i>PubMed</i>-indexed literature (draft system), MEREDITH was enhanced to incorporate clinical studies on drug response within the specific tumor type, trial databases, drug approval status, and oncologic guidelines. The MTB provided a benchmark with manually curated treatment recommendations and assessed the clinical relevance of LLM-generated options (qualitative assessment). We measured semantic cosine similarity between LLM suggestions and clinician responses (quantitative assessment).</p><p><strong>Results: </strong>MEREDITH identified a broader range of treatment options (median 4) compared with MTB experts (median 2). These options included therapies on the basis of preclinical data and combination treatments, expanding the treatment possibilities for consideration by the MTB. This broader approach was achieved by incorporating a curated medical data set that contextualized molecular targetability. Mirroring the approach MTB experts use to evaluate MTB cases improved the LLM's ability to generate relevant suggestions. This is supported by high concordance between LLM suggestions and expert recommendations (94.7% for the enhanced system) and a significant increase in semantic similarity from the draft to the enhanced system (from 0.71 to 0.76, <i>P</i> = .01).</p><p><strong>Conclusion: </strong>Expert feedback and domain-specific data augment LLM performance. Future research should investigate responsible LLM integration into real-world clinical workflows.</p>\",\"PeriodicalId\":14797,\"journal\":{\"name\":\"JCO precision oncology\",\"volume\":\"8 \",\"pages\":\"e2400478\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JCO precision oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1200/PO-24-00478\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCO precision oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1200/PO-24-00478","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:快速扩充的医学文献给肿瘤学家寻求有针对性的癌症疗法带来了挑战。通用大型语言模型(LLM)缺乏特定领域的知识,限制了其临床实用性。本研究介绍了用于定制医疗保健的医学证据检索和数据整合(MEREDITH)LLM 系统,该系统旨在为精准肿瘤学的治疗建议提供支持。MEREDITH 基于谷歌的 Gemini Pro LLM,使用检索增强生成和思维链:我们利用德国一家大型癌症中心的分子肿瘤委员会(MTB)提供的迭代反馈,在 10 个公开的虚构肿瘤病例上对 MEREDITH 进行了评估。MEREDITH 最初仅限于 PubMed 索引的文献(系统草案),后来进行了改进,纳入了特定肿瘤类型药物反应的临床研究、试验数据库、药物批准状态和肿瘤指南。MTB提供了人工策划的治疗建议基准,并评估了LLM生成的方案的临床相关性(定性评估)。我们测量了LLM建议与临床医生回复之间的语义余弦相似度(定量评估):结果:与 MTB 专家(中位数为 2)相比,MEREDITH 确定了范围更广的治疗方案(中位数为 4)。这些方案包括基于临床前数据的疗法和联合疗法,从而扩大了 MTB 考虑的治疗可能性。这种更广泛的方法是通过纳入一个经过整理的医学数据集来实现的,该数据集将分子靶向性的背景情况具体化。参照 MTB 专家评估 MTB 病例的方法,提高了 LLM 生成相关建议的能力。LLM 建议与专家建议之间的高度一致性(增强型系统为 94.7%)以及从草案到增强型系统之间语义相似性的显著提高(从 0.71 到 0.76,P = .01)都证明了这一点:专家反馈和特定领域的数据增强了 LLM 的性能。未来的研究应将 LLM 负责任地整合到真实世界的临床工作流程中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Expert-Guided Large Language Models for Clinical Decision Support in Precision Oncology.

Purpose: Rapidly expanding medical literature challenges oncologists seeking targeted cancer therapies. General-purpose large language models (LLMs) lack domain-specific knowledge, limiting their clinical utility. This study introduces the LLM system Medical Evidence Retrieval and Data Integration for Tailored Healthcare (MEREDITH), designed to support treatment recommendations in precision oncology. Built on Google's Gemini Pro LLM, MEREDITH uses retrieval-augmented generation and chain of thought.

Methods: We evaluated MEREDITH on 10 publicly available fictional oncology cases with iterative feedback from a molecular tumor board (MTB) at a major German cancer center. Initially limited to PubMed-indexed literature (draft system), MEREDITH was enhanced to incorporate clinical studies on drug response within the specific tumor type, trial databases, drug approval status, and oncologic guidelines. The MTB provided a benchmark with manually curated treatment recommendations and assessed the clinical relevance of LLM-generated options (qualitative assessment). We measured semantic cosine similarity between LLM suggestions and clinician responses (quantitative assessment).

Results: MEREDITH identified a broader range of treatment options (median 4) compared with MTB experts (median 2). These options included therapies on the basis of preclinical data and combination treatments, expanding the treatment possibilities for consideration by the MTB. This broader approach was achieved by incorporating a curated medical data set that contextualized molecular targetability. Mirroring the approach MTB experts use to evaluate MTB cases improved the LLM's ability to generate relevant suggestions. This is supported by high concordance between LLM suggestions and expert recommendations (94.7% for the enhanced system) and a significant increase in semantic similarity from the draft to the enhanced system (from 0.71 to 0.76, P = .01).

Conclusion: Expert feedback and domain-specific data augment LLM performance. Future research should investigate responsible LLM integration into real-world clinical workflows.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
4.30%
发文量
363
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信