circ2DGNN:通过基于变换器的图神经网络进行 circRNA-疾病关联预测。

IF 3.6 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Keliang Cen;Zheming Xing;Xuan Wang;Yadong Wang;Junyi Li
{"title":"circ2DGNN:通过基于变换器的图神经网络进行 circRNA-疾病关联预测。","authors":"Keliang Cen;Zheming Xing;Xuan Wang;Yadong Wang;Junyi Li","doi":"10.1109/TCBB.2024.3488281","DOIUrl":null,"url":null,"abstract":"Investigating the associations between circRNA and diseases is vital for comprehending the underlying mechanisms of diseases and formulating effective therapies. Computational prediction methods often rely solely on known circRNA-disease data, indirectly incorporating other biomolecules' effects by computing circRNA and disease similarities based on these molecules. However, this approach is limited, as other biomolecules also play significant roles in circRNA-disease interactions. To address this, we construct a comprehensive heterogeneous network incorporating data on human circRNAs, diseases, and other biomolecule interactions to develop a novel computational model, circ2DGNN, which is built upon a heterogeneous graph neural network. circ2DGNN directly takes heterogeneous networks as inputs and obtains the embedded representation of each node for downstream link prediction through graph representation learning. circ2DGNN employs a Transformer-like architecture, which can compute heterogeneous attention score for each edge, and perform message propagation and aggregation, using a residual connection to enhance the representation vector. It uniquely applies the same parameter matrix only to identical meta-relationships, reflecting diverse parameter spaces for different relationship types. After fine-tuning hyperparameters via five-fold cross-validation, evaluation conducted on a test dataset shows circ2DGNN outperforms existing state-of-the-art(SOTA) methods.","PeriodicalId":13344,"journal":{"name":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","volume":"21 6","pages":"2556-2567"},"PeriodicalIF":3.6000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"circ2DGNN: circRNA-Disease Association Prediction via Transformer-Based Graph Neural Network\",\"authors\":\"Keliang Cen;Zheming Xing;Xuan Wang;Yadong Wang;Junyi Li\",\"doi\":\"10.1109/TCBB.2024.3488281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Investigating the associations between circRNA and diseases is vital for comprehending the underlying mechanisms of diseases and formulating effective therapies. Computational prediction methods often rely solely on known circRNA-disease data, indirectly incorporating other biomolecules' effects by computing circRNA and disease similarities based on these molecules. However, this approach is limited, as other biomolecules also play significant roles in circRNA-disease interactions. To address this, we construct a comprehensive heterogeneous network incorporating data on human circRNAs, diseases, and other biomolecule interactions to develop a novel computational model, circ2DGNN, which is built upon a heterogeneous graph neural network. circ2DGNN directly takes heterogeneous networks as inputs and obtains the embedded representation of each node for downstream link prediction through graph representation learning. circ2DGNN employs a Transformer-like architecture, which can compute heterogeneous attention score for each edge, and perform message propagation and aggregation, using a residual connection to enhance the representation vector. It uniquely applies the same parameter matrix only to identical meta-relationships, reflecting diverse parameter spaces for different relationship types. After fine-tuning hyperparameters via five-fold cross-validation, evaluation conducted on a test dataset shows circ2DGNN outperforms existing state-of-the-art(SOTA) methods.\",\"PeriodicalId\":13344,\"journal\":{\"name\":\"IEEE/ACM Transactions on Computational Biology and Bioinformatics\",\"volume\":\"21 6\",\"pages\":\"2556-2567\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/ACM Transactions on Computational Biology and Bioinformatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10739918/\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10739918/","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

研究 circRNA 与疾病之间的关联对于理解疾病的内在机制和制定有效疗法至关重要。计算预测方法通常仅依赖于已知的 circRNA-疾病数据,通过计算基于这些分子的 circRNA 和疾病相似性,间接纳入其他生物分子的影响。然而,这种方法存在局限性,因为其他生物大分子在 circRNA 与疾病的相互作用中也发挥着重要作用。为了解决这个问题,我们构建了一个综合的异构网络,其中包含人类 circRNA、疾病和其他生物分子相互作用的数据,从而开发出一种新型计算模型 circ2DGNN,它建立在异构图神经网络的基础上。circ2DGNN直接将异构网络作为输入,通过图表示学习获得每个节点的嵌入表示,用于下游链接预测。circ2DGNN采用了类似变形器的架构,可以计算每条边的异构关注度得分,并进行信息传播和聚合,利用残差连接增强表示向量。它唯一适用于相同元关系的相同参数矩阵,反映了不同关系类型的不同参数空间。通过五倍交叉验证对超参数进行微调后,在测试数据集上进行的评估显示,circ2DGNN优于现有的最先进(SOTA)方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
circ2DGNN: circRNA-Disease Association Prediction via Transformer-Based Graph Neural Network
Investigating the associations between circRNA and diseases is vital for comprehending the underlying mechanisms of diseases and formulating effective therapies. Computational prediction methods often rely solely on known circRNA-disease data, indirectly incorporating other biomolecules' effects by computing circRNA and disease similarities based on these molecules. However, this approach is limited, as other biomolecules also play significant roles in circRNA-disease interactions. To address this, we construct a comprehensive heterogeneous network incorporating data on human circRNAs, diseases, and other biomolecule interactions to develop a novel computational model, circ2DGNN, which is built upon a heterogeneous graph neural network. circ2DGNN directly takes heterogeneous networks as inputs and obtains the embedded representation of each node for downstream link prediction through graph representation learning. circ2DGNN employs a Transformer-like architecture, which can compute heterogeneous attention score for each edge, and perform message propagation and aggregation, using a residual connection to enhance the representation vector. It uniquely applies the same parameter matrix only to identical meta-relationships, reflecting diverse parameter spaces for different relationship types. After fine-tuning hyperparameters via five-fold cross-validation, evaluation conducted on a test dataset shows circ2DGNN outperforms existing state-of-the-art(SOTA) methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
6.70%
发文量
479
审稿时长
3 months
期刊介绍: IEEE/ACM Transactions on Computational Biology and Bioinformatics emphasizes the algorithmic, mathematical, statistical and computational methods that are central in bioinformatics and computational biology; the development and testing of effective computer programs in bioinformatics; the development of biological databases; and important biological results that are obtained from the use of these methods, programs and databases; the emerging field of Systems Biology, where many forms of data are used to create a computer-based model of a complex biological system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信