Ana P. Pinto, Vitor R. Muñoz, Maria Eduarda A. Tavares, Ivo V. de Sousa Neto, Jonathas R. dos Santos, Guilherme S. Rodrigues, Ruither O. Gomes Carolino, Luciane C. Alberici, Fernando M. Simabuco, Giovana R. Teixeira, José R. Pauli, Leandro P. de Moura, Dennys E. Cintra, Eduardo R. Ropelle, Ellen C. Freitas, Donato A. Rivas, Adelino S. R. da Silva
{"title":"短期运动可抵消加速老化对小鼠体能和肝脏健康的影响。","authors":"Ana P. Pinto, Vitor R. Muñoz, Maria Eduarda A. Tavares, Ivo V. de Sousa Neto, Jonathas R. dos Santos, Guilherme S. Rodrigues, Ruither O. Gomes Carolino, Luciane C. Alberici, Fernando M. Simabuco, Giovana R. Teixeira, José R. Pauli, Leandro P. de Moura, Dennys E. Cintra, Eduardo R. Ropelle, Ellen C. Freitas, Donato A. Rivas, Adelino S. R. da Silva","doi":"10.1111/1440-1681.70001","DOIUrl":null,"url":null,"abstract":"<p>Senescence impairs liver physiology, mitochondrial function and circadian regulation, resulting in systemic metabolic dysregulation. Given the limited research on the effects of combined exercise on an ageing liver, this study aimed to evaluate its impact on liver metabolism, circadian rhythms and mitochondrial function in senescence-accelerated mouse-prone 8 (SAMP8) and senescence-accelerated mouse-resistant 1 (SAMR1) mice. Histological, reverse transcription quantitative polymerase chain reaction (RT-qPCR) and immunoblotting analyses were conducted, supplemented by transcriptomic data sets and AML12 hepatocyte studies. Sedentary SAMP8 mice exhibited decreased muscle strength, reduced mitochondrial complex I levels and increased lipid droplet accumulation. In contrast, combined exercise mitigated muscle strength loss, upregulated proteins involved in mitochondrial complexes (CIII, CIV, CV) and increased <i>Bmal1</i> messenger RNA (mRNA) expression in the liver. These molecular adaptations are associated with healthier liver phenotypes and may influence metabolic function and cellular longevity. Notably, elevated lipid content in aged mice was reduced post-exercise, indicating liver benefits even after a relatively short intervention. The combined exercise regimen did not improve aerobic capacity, likely due to the low volume and brief duration of running. Moreover, no significant effects were observed in SAMR1 mice, possibly because the training intensity was insufficient for younger, healthier animals. These findings underscore the potential of combined strength and endurance exercise to attenuate age-related liver dysfunction, particularly in ageing populations.</p>","PeriodicalId":50684,"journal":{"name":"Clinical and Experimental Pharmacology and Physiology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Short-term exercise counteracts accelerated ageing impacts on physical performance and liver health in mice\",\"authors\":\"Ana P. Pinto, Vitor R. Muñoz, Maria Eduarda A. Tavares, Ivo V. de Sousa Neto, Jonathas R. dos Santos, Guilherme S. Rodrigues, Ruither O. Gomes Carolino, Luciane C. Alberici, Fernando M. Simabuco, Giovana R. Teixeira, José R. Pauli, Leandro P. de Moura, Dennys E. Cintra, Eduardo R. Ropelle, Ellen C. Freitas, Donato A. Rivas, Adelino S. R. da Silva\",\"doi\":\"10.1111/1440-1681.70001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Senescence impairs liver physiology, mitochondrial function and circadian regulation, resulting in systemic metabolic dysregulation. Given the limited research on the effects of combined exercise on an ageing liver, this study aimed to evaluate its impact on liver metabolism, circadian rhythms and mitochondrial function in senescence-accelerated mouse-prone 8 (SAMP8) and senescence-accelerated mouse-resistant 1 (SAMR1) mice. Histological, reverse transcription quantitative polymerase chain reaction (RT-qPCR) and immunoblotting analyses were conducted, supplemented by transcriptomic data sets and AML12 hepatocyte studies. Sedentary SAMP8 mice exhibited decreased muscle strength, reduced mitochondrial complex I levels and increased lipid droplet accumulation. In contrast, combined exercise mitigated muscle strength loss, upregulated proteins involved in mitochondrial complexes (CIII, CIV, CV) and increased <i>Bmal1</i> messenger RNA (mRNA) expression in the liver. These molecular adaptations are associated with healthier liver phenotypes and may influence metabolic function and cellular longevity. Notably, elevated lipid content in aged mice was reduced post-exercise, indicating liver benefits even after a relatively short intervention. The combined exercise regimen did not improve aerobic capacity, likely due to the low volume and brief duration of running. Moreover, no significant effects were observed in SAMR1 mice, possibly because the training intensity was insufficient for younger, healthier animals. These findings underscore the potential of combined strength and endurance exercise to attenuate age-related liver dysfunction, particularly in ageing populations.</p>\",\"PeriodicalId\":50684,\"journal\":{\"name\":\"Clinical and Experimental Pharmacology and Physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical and Experimental Pharmacology and Physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1440-1681.70001\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Experimental Pharmacology and Physiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1440-1681.70001","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Short-term exercise counteracts accelerated ageing impacts on physical performance and liver health in mice
Senescence impairs liver physiology, mitochondrial function and circadian regulation, resulting in systemic metabolic dysregulation. Given the limited research on the effects of combined exercise on an ageing liver, this study aimed to evaluate its impact on liver metabolism, circadian rhythms and mitochondrial function in senescence-accelerated mouse-prone 8 (SAMP8) and senescence-accelerated mouse-resistant 1 (SAMR1) mice. Histological, reverse transcription quantitative polymerase chain reaction (RT-qPCR) and immunoblotting analyses were conducted, supplemented by transcriptomic data sets and AML12 hepatocyte studies. Sedentary SAMP8 mice exhibited decreased muscle strength, reduced mitochondrial complex I levels and increased lipid droplet accumulation. In contrast, combined exercise mitigated muscle strength loss, upregulated proteins involved in mitochondrial complexes (CIII, CIV, CV) and increased Bmal1 messenger RNA (mRNA) expression in the liver. These molecular adaptations are associated with healthier liver phenotypes and may influence metabolic function and cellular longevity. Notably, elevated lipid content in aged mice was reduced post-exercise, indicating liver benefits even after a relatively short intervention. The combined exercise regimen did not improve aerobic capacity, likely due to the low volume and brief duration of running. Moreover, no significant effects were observed in SAMR1 mice, possibly because the training intensity was insufficient for younger, healthier animals. These findings underscore the potential of combined strength and endurance exercise to attenuate age-related liver dysfunction, particularly in ageing populations.
期刊介绍:
Clinical and Experimental Pharmacology and Physiology is an international journal founded in 1974 by Mike Rand, Austin Doyle, John Coghlan and Paul Korner. Our focus is new frontiers in physiology and pharmacology, emphasizing the translation of basic research to clinical practice. We publish original articles, invited reviews and our exciting, cutting-edge Frontiers-in-Research series’.