{"title":"BTN2A1:提高人类γδ T 细胞杀伤肿瘤能力的新靶点","authors":"Dieter Kabelitz","doi":"10.1158/2326-6066.CIR-24-0925","DOIUrl":null,"url":null,"abstract":"<p><p>γδ T cells have recently raised great interest as effector cells in cancer immunotherapy because of their HLA-independent mode of action and their broad tumor reactivity. To translate the application of γδ T cells into clinically effective immunotherapies, specific tumor targeting and/or boosting of γδ T-cell activation in vivo seem to be a critical step. In this issue, Le Floch and colleagues report a new strategy for enabling γδ T cells to be specifically activated to kill acute lymphoblastic leukemia cells and solid tumor cells using agonistic BTN2A1 antibodies. See related article by Le Floch et al., p. XX .</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":"OF1"},"PeriodicalIF":8.1000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BTN2A1: A Novel Target to Boost Tumor Killing Capacity of Human γδ T Cells.\",\"authors\":\"Dieter Kabelitz\",\"doi\":\"10.1158/2326-6066.CIR-24-0925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>γδ T cells have recently raised great interest as effector cells in cancer immunotherapy because of their HLA-independent mode of action and their broad tumor reactivity. To translate the application of γδ T cells into clinically effective immunotherapies, specific tumor targeting and/or boosting of γδ T-cell activation in vivo seem to be a critical step. In this issue, Le Floch and colleagues report a new strategy for enabling γδ T cells to be specifically activated to kill acute lymphoblastic leukemia cells and solid tumor cells using agonistic BTN2A1 antibodies. See related article by Le Floch et al., p. XX .</p>\",\"PeriodicalId\":9474,\"journal\":{\"name\":\"Cancer immunology research\",\"volume\":\" \",\"pages\":\"OF1\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer immunology research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/2326-6066.CIR-24-0925\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer immunology research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/2326-6066.CIR-24-0925","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
γδT细胞作为癌症免疫疗法的效应细胞,因其不依赖于HLA的作用模式和广泛的肿瘤反应性,最近引起了人们的极大兴趣。要将γδT细胞的应用转化为临床有效的免疫疗法,体内特异性肿瘤靶向和/或增强γδT细胞活化似乎是关键的一步。在本期杂志中,Le Floch 及其同事报告了一种新策略,利用激动剂 BTN2A1 抗体特异性激活γδ T 细胞以杀死急性淋巴细胞白血病细胞和实体瘤细胞。参见 Le Floch 等人的相关文章,第 XX 页。
BTN2A1: A Novel Target to Boost Tumor Killing Capacity of Human γδ T Cells.
γδ T cells have recently raised great interest as effector cells in cancer immunotherapy because of their HLA-independent mode of action and their broad tumor reactivity. To translate the application of γδ T cells into clinically effective immunotherapies, specific tumor targeting and/or boosting of γδ T-cell activation in vivo seem to be a critical step. In this issue, Le Floch and colleagues report a new strategy for enabling γδ T cells to be specifically activated to kill acute lymphoblastic leukemia cells and solid tumor cells using agonistic BTN2A1 antibodies. See related article by Le Floch et al., p. XX .
期刊介绍:
Cancer Immunology Research publishes exceptional original articles showcasing significant breakthroughs across the spectrum of cancer immunology. From fundamental inquiries into host-tumor interactions to developmental therapeutics, early translational studies, and comprehensive analyses of late-stage clinical trials, the journal provides a comprehensive view of the discipline. In addition to original research, the journal features reviews and opinion pieces of broad significance, fostering cross-disciplinary collaboration within the cancer research community. Serving as a premier resource for immunology knowledge in cancer research, the journal drives deeper insights into the host-tumor relationship, potent cancer treatments, and enhanced clinical outcomes.
Key areas of interest include endogenous antitumor immunity, tumor-promoting inflammation, cancer antigens, vaccines, antibodies, cellular therapy, cytokines, immune regulation, immune suppression, immunomodulatory effects of cancer treatment, emerging technologies, and insightful clinical investigations with immunological implications.