利用机器学习辅助固态纳米孔自动筛查维生素 B1 的电传感。

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
The Journal of Physical Chemistry B Pub Date : 2025-01-30 Epub Date: 2024-10-31 DOI:10.1021/acs.jpcb.4c05619
Sneha Mittal, Milan Kumar Jena, Biswarup Pathak
{"title":"利用机器学习辅助固态纳米孔自动筛查维生素 B1 的电传感。","authors":"Sneha Mittal, Milan Kumar Jena, Biswarup Pathak","doi":"10.1021/acs.jpcb.4c05619","DOIUrl":null,"url":null,"abstract":"<p><p>Micronutrient detection and identification at the single-molecule level are paramount for both clinical and home diagnostics. Analytical tools such as high-performance liquid chromatography and liquid chromatography-tandem mass spectrometry have been widely used but include a high instrument cost and prolonged analysis time. Here, as a model system, by merging nanopore signatures with machine learning algorithms, we propose an automated electric sensing strategy to identify vitamin B1 and its phosphorylated derivatives with good accuracy. Further, the relationship between vitamin B1 dynamics and nanopore signatures is examined. To understand the machine-decision-making process, Shapley additive explanations are made. Using a machine learning aided solid-state nanopore, we pave the way for next-generation micronutrient detection.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":"1301-1310"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated-Screening Oriented Electric Sensing of Vitamin B1 Using a Machine Learning Aided Solid-State Nanopore.\",\"authors\":\"Sneha Mittal, Milan Kumar Jena, Biswarup Pathak\",\"doi\":\"10.1021/acs.jpcb.4c05619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Micronutrient detection and identification at the single-molecule level are paramount for both clinical and home diagnostics. Analytical tools such as high-performance liquid chromatography and liquid chromatography-tandem mass spectrometry have been widely used but include a high instrument cost and prolonged analysis time. Here, as a model system, by merging nanopore signatures with machine learning algorithms, we propose an automated electric sensing strategy to identify vitamin B1 and its phosphorylated derivatives with good accuracy. Further, the relationship between vitamin B1 dynamics and nanopore signatures is examined. To understand the machine-decision-making process, Shapley additive explanations are made. Using a machine learning aided solid-state nanopore, we pave the way for next-generation micronutrient detection.</p>\",\"PeriodicalId\":60,\"journal\":{\"name\":\"The Journal of Physical Chemistry B\",\"volume\":\" \",\"pages\":\"1301-1310\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpcb.4c05619\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c05619","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

单分子水平的微量营养素检测和鉴定对于临床和家庭诊断都至关重要。高效液相色谱法和液相色谱-串联质谱法等分析工具已被广泛使用,但仪器成本高、分析时间长。在此,我们以纳米孔为模型系统,通过将纳米孔特征与机器学习算法相结合,提出了一种自动电传感策略,可准确识别维生素 B1 及其磷酸化衍生物。此外,我们还研究了维生素 B1 动态与纳米孔特征之间的关系。为了理解机器决策过程,我们进行了 Shapley 加法解释。利用机器学习辅助固态纳米孔,我们为下一代微量营养素检测铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated-Screening Oriented Electric Sensing of Vitamin B1 Using a Machine Learning Aided Solid-State Nanopore.

Micronutrient detection and identification at the single-molecule level are paramount for both clinical and home diagnostics. Analytical tools such as high-performance liquid chromatography and liquid chromatography-tandem mass spectrometry have been widely used but include a high instrument cost and prolonged analysis time. Here, as a model system, by merging nanopore signatures with machine learning algorithms, we propose an automated electric sensing strategy to identify vitamin B1 and its phosphorylated derivatives with good accuracy. Further, the relationship between vitamin B1 dynamics and nanopore signatures is examined. To understand the machine-decision-making process, Shapley additive explanations are made. Using a machine learning aided solid-state nanopore, we pave the way for next-generation micronutrient detection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信