阐明大肠杆菌外膜的抗生素渗透:分子动力学的启示。

IF 5.6 2区 化学 Q1 CHEMISTRY, MEDICINAL
Javad Deylami, Shu Sin Chng, Ee Hou Yong
{"title":"阐明大肠杆菌外膜的抗生素渗透:分子动力学的启示。","authors":"Javad Deylami, Shu Sin Chng, Ee Hou Yong","doi":"10.1021/acs.jcim.4c01249","DOIUrl":null,"url":null,"abstract":"<p><p>Antibiotic resistance represents a critical public health threat, with an increasing number of Gram-negative pathogens demonstrating resistance to a broad range of clinical drugs. A primary challenge in enhancing antibiotic efficacy is overcoming the robust barrier presented by the bacterial outer membrane. Our research addresses a longstanding question: What is the rate of antibiotic permeation across the outer membrane (OM) of Gram-negative bacteria? Utilizing molecular dynamics (MD) simulations, we assess the passive permeability profiles of four commercially available antibiotics─gentamicin, novobiocin, rifampicin, and tetracycline across an asymmetric atomistic model of the <i>Escherichia coli</i> (<i>E. coli</i>) OM, employing the inhomogeneous solubility-diffusion model. Our examination of the interactions between these drugs and their environmental context during OM permeation reveals that extended hydrogen bond formation and drug-cation interactions significantly hinder the energetics of passive permeation, notably affecting novobiocin. Our MD simulations corroborate well with experimental data and reveal new implications of solvation on drug permeability, overall advancing the possible use of computational prediction of membrane permeability in future antibiotic discovery.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558678/pdf/","citationCount":"0","resultStr":"{\"title\":\"Elucidating Antibiotic Permeation through the <i>Escherichia coli</i> Outer Membrane: Insights from Molecular Dynamics.\",\"authors\":\"Javad Deylami, Shu Sin Chng, Ee Hou Yong\",\"doi\":\"10.1021/acs.jcim.4c01249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Antibiotic resistance represents a critical public health threat, with an increasing number of Gram-negative pathogens demonstrating resistance to a broad range of clinical drugs. A primary challenge in enhancing antibiotic efficacy is overcoming the robust barrier presented by the bacterial outer membrane. Our research addresses a longstanding question: What is the rate of antibiotic permeation across the outer membrane (OM) of Gram-negative bacteria? Utilizing molecular dynamics (MD) simulations, we assess the passive permeability profiles of four commercially available antibiotics─gentamicin, novobiocin, rifampicin, and tetracycline across an asymmetric atomistic model of the <i>Escherichia coli</i> (<i>E. coli</i>) OM, employing the inhomogeneous solubility-diffusion model. Our examination of the interactions between these drugs and their environmental context during OM permeation reveals that extended hydrogen bond formation and drug-cation interactions significantly hinder the energetics of passive permeation, notably affecting novobiocin. Our MD simulations corroborate well with experimental data and reveal new implications of solvation on drug permeability, overall advancing the possible use of computational prediction of membrane permeability in future antibiotic discovery.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558678/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jcim.4c01249\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c01249","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

抗生素耐药性是一个严重的公共卫生威胁,越来越多的革兰氏阴性病原体对多种临床药物产生了耐药性。提高抗生素疗效的一个主要挑战是克服细菌外膜构成的坚固屏障。我们的研究解决了一个长期存在的问题:抗生素通过革兰氏阴性细菌外膜(OM)的渗透率是多少?通过分子动力学(MD)模拟,我们采用非均相溶解度-扩散模型,评估了四种市售抗生素--根他米星、新生物素、利福平和四环素--在大肠杆菌(E. coli)外膜非对称原子模型上的被动渗透性曲线。我们对这些药物在OM渗透过程中与其环境背景之间的相互作用进行了研究,结果表明,氢键的形成和药物与阳离子之间的相互作用极大地阻碍了被动渗透的能量,尤其是对新生物素的影响。我们的 MD 模拟与实验数据相吻合,揭示了溶解对药物渗透性的新影响,总体上推动了膜渗透性计算预测在未来抗生素发现中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Elucidating Antibiotic Permeation through the <i>Escherichia coli</i> Outer Membrane: Insights from Molecular Dynamics.

Elucidating Antibiotic Permeation through the Escherichia coli Outer Membrane: Insights from Molecular Dynamics.

Antibiotic resistance represents a critical public health threat, with an increasing number of Gram-negative pathogens demonstrating resistance to a broad range of clinical drugs. A primary challenge in enhancing antibiotic efficacy is overcoming the robust barrier presented by the bacterial outer membrane. Our research addresses a longstanding question: What is the rate of antibiotic permeation across the outer membrane (OM) of Gram-negative bacteria? Utilizing molecular dynamics (MD) simulations, we assess the passive permeability profiles of four commercially available antibiotics─gentamicin, novobiocin, rifampicin, and tetracycline across an asymmetric atomistic model of the Escherichia coli (E. coli) OM, employing the inhomogeneous solubility-diffusion model. Our examination of the interactions between these drugs and their environmental context during OM permeation reveals that extended hydrogen bond formation and drug-cation interactions significantly hinder the energetics of passive permeation, notably affecting novobiocin. Our MD simulations corroborate well with experimental data and reveal new implications of solvation on drug permeability, overall advancing the possible use of computational prediction of membrane permeability in future antibiotic discovery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信