{"title":"对布氏左旋乳杆菌 M-14 粗外多糖体外模拟消化和发酵特性的评估。","authors":"Qi Wang, Gen Li, Wenjun Qin, Jin Cai, Nifei Wang","doi":"10.1111/1750-3841.17467","DOIUrl":null,"url":null,"abstract":"<p><p>The present study employed an in vitro static digestion model to simulate the saliva-gastrointestinal digestion and fecal fermentation of exopolysaccharides (EPSs) extracted from Levilactobacillus brevis M-14, aiming to understand the dynamic changes in physicochemical properties, biological potential of EPS, as well as their impact on the human enteric microorganism. EPS was mainly composed of polysaccharides. The molecular weight (M<sub>w</sub>) showed that EPS comprised two parts with a high M<sub>w</sub> and a low M<sub>w</sub> fraction of 42.81 × 10<sup>4</sup> and 1.23 × 10<sup>4</sup> Da, respectively. EPSs mainly consisted of mannose, rhamnose, galacturonic acid, glucose, and galactose in a molar ratio of 0.42∶0.13∶0.21∶0.13∶0.11. In the simulated digestion process, EPS was relatively stable. Furthermore, simulated digestion increased the antioxidant and hypoglycemic capacities of EPS. During the fermentation stage, the total carbohydrate contents of EPS decreased by 20.19%. The M<sub>w</sub> of the two components of EPS decreased by 16.37% and 61.67%, respectively, and accompanied by the production of free monosaccharides. EPS had the potential to modulate the composition of gut microbiota, increasing the relative abundance of Enterococcus and Parabacteroides, while decreasing the relative abundance of Bacteroides. The pH decreased and total short-chain fatty acids contents increased, especially acetic acid and propionic acid. This research provided valuable insights into the potential application of EPS as a prebiotic agent.</p>","PeriodicalId":193,"journal":{"name":"Journal of Food Science","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of in vitro simulated digestion and fermentation characteristics of the crude exopolysaccharide from Levilactobacillus brevis M-14.\",\"authors\":\"Qi Wang, Gen Li, Wenjun Qin, Jin Cai, Nifei Wang\",\"doi\":\"10.1111/1750-3841.17467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The present study employed an in vitro static digestion model to simulate the saliva-gastrointestinal digestion and fecal fermentation of exopolysaccharides (EPSs) extracted from Levilactobacillus brevis M-14, aiming to understand the dynamic changes in physicochemical properties, biological potential of EPS, as well as their impact on the human enteric microorganism. EPS was mainly composed of polysaccharides. The molecular weight (M<sub>w</sub>) showed that EPS comprised two parts with a high M<sub>w</sub> and a low M<sub>w</sub> fraction of 42.81 × 10<sup>4</sup> and 1.23 × 10<sup>4</sup> Da, respectively. EPSs mainly consisted of mannose, rhamnose, galacturonic acid, glucose, and galactose in a molar ratio of 0.42∶0.13∶0.21∶0.13∶0.11. In the simulated digestion process, EPS was relatively stable. Furthermore, simulated digestion increased the antioxidant and hypoglycemic capacities of EPS. During the fermentation stage, the total carbohydrate contents of EPS decreased by 20.19%. The M<sub>w</sub> of the two components of EPS decreased by 16.37% and 61.67%, respectively, and accompanied by the production of free monosaccharides. EPS had the potential to modulate the composition of gut microbiota, increasing the relative abundance of Enterococcus and Parabacteroides, while decreasing the relative abundance of Bacteroides. The pH decreased and total short-chain fatty acids contents increased, especially acetic acid and propionic acid. This research provided valuable insights into the potential application of EPS as a prebiotic agent.</p>\",\"PeriodicalId\":193,\"journal\":{\"name\":\"Journal of Food Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/1750-3841.17467\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/1750-3841.17467","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Evaluation of in vitro simulated digestion and fermentation characteristics of the crude exopolysaccharide from Levilactobacillus brevis M-14.
The present study employed an in vitro static digestion model to simulate the saliva-gastrointestinal digestion and fecal fermentation of exopolysaccharides (EPSs) extracted from Levilactobacillus brevis M-14, aiming to understand the dynamic changes in physicochemical properties, biological potential of EPS, as well as their impact on the human enteric microorganism. EPS was mainly composed of polysaccharides. The molecular weight (Mw) showed that EPS comprised two parts with a high Mw and a low Mw fraction of 42.81 × 104 and 1.23 × 104 Da, respectively. EPSs mainly consisted of mannose, rhamnose, galacturonic acid, glucose, and galactose in a molar ratio of 0.42∶0.13∶0.21∶0.13∶0.11. In the simulated digestion process, EPS was relatively stable. Furthermore, simulated digestion increased the antioxidant and hypoglycemic capacities of EPS. During the fermentation stage, the total carbohydrate contents of EPS decreased by 20.19%. The Mw of the two components of EPS decreased by 16.37% and 61.67%, respectively, and accompanied by the production of free monosaccharides. EPS had the potential to modulate the composition of gut microbiota, increasing the relative abundance of Enterococcus and Parabacteroides, while decreasing the relative abundance of Bacteroides. The pH decreased and total short-chain fatty acids contents increased, especially acetic acid and propionic acid. This research provided valuable insights into the potential application of EPS as a prebiotic agent.
期刊介绍:
The goal of the Journal of Food Science is to offer scientists, researchers, and other food professionals the opportunity to share knowledge of scientific advancements in the myriad disciplines affecting their work, through a respected peer-reviewed publication. The Journal of Food Science serves as an international forum for vital research and developments in food science.
The range of topics covered in the journal include:
-Concise Reviews and Hypotheses in Food Science
-New Horizons in Food Research
-Integrated Food Science
-Food Chemistry
-Food Engineering, Materials Science, and Nanotechnology
-Food Microbiology and Safety
-Sensory and Consumer Sciences
-Health, Nutrition, and Food
-Toxicology and Chemical Food Safety
The Journal of Food Science publishes peer-reviewed articles that cover all aspects of food science, including safety and nutrition. Reviews should be 15 to 50 typewritten pages (including tables, figures, and references), should provide in-depth coverage of a narrowly defined topic, and should embody careful evaluation (weaknesses, strengths, explanation of discrepancies in results among similar studies) of all pertinent studies, so that insightful interpretations and conclusions can be presented. Hypothesis papers are especially appropriate in pioneering areas of research or important areas that are afflicted by scientific controversy.