Jiaqi Liu, Hao Wang, Zijiao Feng, Hailin Ma, Yuen Yee Cheng, Jie Xu, Yanchun Guan, Shuo Wu, Kedong Song
{"title":"接枝 PNIPAAm 的热敏木质纤维素中空纤维膜的制备及其在 RSOC 动态培养中作为细胞培养载体的应用","authors":"Jiaqi Liu, Hao Wang, Zijiao Feng, Hailin Ma, Yuen Yee Cheng, Jie Xu, Yanchun Guan, Shuo Wu, Kedong Song","doi":"10.1002/biot.202400444","DOIUrl":null,"url":null,"abstract":"<p>Currently, the cells, which are urgently required for large-scale application in biomedical-related fields, harvested by traditional trypsin digestion are usually subject to repeated digestion, leading to a reduction of cell activity. In this study, poly (N-isopropylacrylamide) (PNIPAAm) was grafted onto the lignocellulose hollow fiber membranes (HFMs) with cerium ammonium nitrate (CAN) as the initiator to prepare thermosensitive HFMs, which was combined with a rotation system of culture (RSOC) to achieve dynamic culture and non-destructive harvesting of cells from the HFMs. The results of ATR-FTIR, elemental analysis, and SEM confirmed the successful preparation of PNIPAAm-grafted-HFMs, which also showed good biocompatibility to apply for cell culture carriers. In cooling detachment, the HFMs-0.01 group could completely detach the cells within 1 h with a cell separation efficiency of more than 90%. The laminin (LN) and fibronectin (FN) harvested by cooling detachment of P8 generation PC12 cells reached 0.0531 ± 0.0032 and 2.5045 ± 0.0001 pg/cell, respectively, which were significantly higher than that by trypsin digestion. In addition, the cells on the thermosensitive HFMs proliferated fastest in RSOC at 30 rpm with higher glucose consumption and lactate metabolism than in static conditions. Moreover, the cells that had dynamic detachment at 20 rpm had the highest cell density and activity. Therefore, the thermosensitive HFMs could be applied as cell culture carriers in RSOC for cell culturing at 30 rpm and harvesting at 20 rpm, which would provide considerable potential for large-scale cell culture in vitro.</p>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 10","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of Thermosensitive Lignocellulose Hollow Fiber Membrane Grafted With PNIPAAm and Its Application as a Cell Culture Carrier in a RSOC Dynamic Culture\",\"authors\":\"Jiaqi Liu, Hao Wang, Zijiao Feng, Hailin Ma, Yuen Yee Cheng, Jie Xu, Yanchun Guan, Shuo Wu, Kedong Song\",\"doi\":\"10.1002/biot.202400444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Currently, the cells, which are urgently required for large-scale application in biomedical-related fields, harvested by traditional trypsin digestion are usually subject to repeated digestion, leading to a reduction of cell activity. In this study, poly (N-isopropylacrylamide) (PNIPAAm) was grafted onto the lignocellulose hollow fiber membranes (HFMs) with cerium ammonium nitrate (CAN) as the initiator to prepare thermosensitive HFMs, which was combined with a rotation system of culture (RSOC) to achieve dynamic culture and non-destructive harvesting of cells from the HFMs. The results of ATR-FTIR, elemental analysis, and SEM confirmed the successful preparation of PNIPAAm-grafted-HFMs, which also showed good biocompatibility to apply for cell culture carriers. In cooling detachment, the HFMs-0.01 group could completely detach the cells within 1 h with a cell separation efficiency of more than 90%. The laminin (LN) and fibronectin (FN) harvested by cooling detachment of P8 generation PC12 cells reached 0.0531 ± 0.0032 and 2.5045 ± 0.0001 pg/cell, respectively, which were significantly higher than that by trypsin digestion. In addition, the cells on the thermosensitive HFMs proliferated fastest in RSOC at 30 rpm with higher glucose consumption and lactate metabolism than in static conditions. Moreover, the cells that had dynamic detachment at 20 rpm had the highest cell density and activity. Therefore, the thermosensitive HFMs could be applied as cell culture carriers in RSOC for cell culturing at 30 rpm and harvesting at 20 rpm, which would provide considerable potential for large-scale cell culture in vitro.</p>\",\"PeriodicalId\":134,\"journal\":{\"name\":\"Biotechnology Journal\",\"volume\":\"19 10\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/biot.202400444\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biot.202400444","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Preparation of Thermosensitive Lignocellulose Hollow Fiber Membrane Grafted With PNIPAAm and Its Application as a Cell Culture Carrier in a RSOC Dynamic Culture
Currently, the cells, which are urgently required for large-scale application in biomedical-related fields, harvested by traditional trypsin digestion are usually subject to repeated digestion, leading to a reduction of cell activity. In this study, poly (N-isopropylacrylamide) (PNIPAAm) was grafted onto the lignocellulose hollow fiber membranes (HFMs) with cerium ammonium nitrate (CAN) as the initiator to prepare thermosensitive HFMs, which was combined with a rotation system of culture (RSOC) to achieve dynamic culture and non-destructive harvesting of cells from the HFMs. The results of ATR-FTIR, elemental analysis, and SEM confirmed the successful preparation of PNIPAAm-grafted-HFMs, which also showed good biocompatibility to apply for cell culture carriers. In cooling detachment, the HFMs-0.01 group could completely detach the cells within 1 h with a cell separation efficiency of more than 90%. The laminin (LN) and fibronectin (FN) harvested by cooling detachment of P8 generation PC12 cells reached 0.0531 ± 0.0032 and 2.5045 ± 0.0001 pg/cell, respectively, which were significantly higher than that by trypsin digestion. In addition, the cells on the thermosensitive HFMs proliferated fastest in RSOC at 30 rpm with higher glucose consumption and lactate metabolism than in static conditions. Moreover, the cells that had dynamic detachment at 20 rpm had the highest cell density and activity. Therefore, the thermosensitive HFMs could be applied as cell culture carriers in RSOC for cell culturing at 30 rpm and harvesting at 20 rpm, which would provide considerable potential for large-scale cell culture in vitro.
Biotechnology JournalBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
8.90
自引率
2.10%
发文量
123
审稿时长
1.5 months
期刊介绍:
Biotechnology Journal (2019 Journal Citation Reports: 3.543) is fully comprehensive in its scope and publishes strictly peer-reviewed papers covering novel aspects and methods in all areas of biotechnology. Some issues are devoted to a special topic, providing the latest information on the most crucial areas of research and technological advances.
In addition to these special issues, the journal welcomes unsolicited submissions for primary research articles, such as Research Articles, Rapid Communications and Biotech Methods. BTJ also welcomes proposals of Review Articles - please send in a brief outline of the article and the senior author''s CV to the editorial office.
BTJ promotes a special emphasis on:
Systems Biotechnology
Synthetic Biology and Metabolic Engineering
Nanobiotechnology and Biomaterials
Tissue engineering, Regenerative Medicine and Stem cells
Gene Editing, Gene therapy and Immunotherapy
Omics technologies
Industrial Biotechnology, Biopharmaceuticals and Biocatalysis
Bioprocess engineering and Downstream processing
Plant Biotechnology
Biosafety, Biotech Ethics, Science Communication
Methods and Advances.