3 × 3 隧道τ-MnO2 正极与 Mg2(OH)3Cl-4H2O 之间的异质界面协同作用,实现长循环寿命锌离子水电池

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Fang Xu, Jialin Zheng, Dai-Huo Liu, Ao Wang, Zhenjiang Li, Chunyan Xu, Mengqin Song, Beinuo Zhang, Zhengyu Bai, Zhongwei Chen
{"title":"3 × 3 隧道τ-MnO2 正极与 Mg2(OH)3Cl-4H2O 之间的异质界面协同作用,实现长循环寿命锌离子水电池","authors":"Fang Xu, Jialin Zheng, Dai-Huo Liu, Ao Wang, Zhenjiang Li, Chunyan Xu, Mengqin Song, Beinuo Zhang, Zhengyu Bai, Zhongwei Chen","doi":"10.1039/d4qi02572e","DOIUrl":null,"url":null,"abstract":"Manganese dioxide is considered an ideal cathode candidate material for aqueous zinc-ion batteries. However, its poor conductivity and nanostructural degeneration impede its further application. Herein, a 3 × 3 tunnel-structured τ-MnO<small><sub>2</sub></small> cathode material was synthesized through the addition of excessive Mg<small><sup>2+</sup></small>. During its preparation, a portion of Mg<small><sup>2+</sup></small> was embedded into the 3 × 3 tunnel of τ-MnO<small><sub>2</sub></small> to stabilize the microstructure, while another portion of Mg<small><sup>2+</sup></small> formed a new phase, <em>i.e.</em>, Mg<small><sub>2</sub></small>(OH)<small><sub>3</sub></small>Cl·4H<small><sub>2</sub></small>O, adjoining τ-MnO<small><sub>2</sub></small>, resulting in a cathode material with heterointerface synergy between τ-MnO<small><sub>2</sub></small> and Mg<small><sub>2</sub></small>(OH)<small><sub>3</sub></small>Cl·4H<small><sub>2</sub></small>O. The charge arrangement of the heterointerface between τ-MnO<small><sub>2</sub></small> and Mg<small><sub>2</sub></small>(OH)<small><sub>3</sub></small>Cl·4H<small><sub>2</sub></small>O enabled more active sites and accelerated ion-diffusion kinetics. The introduction of Mg<small><sub>2</sub></small>(OH)<small><sub>3</sub></small>Cl·4H<small><sub>2</sub></small>O increased the proportion of Mn(<small>IV</small>) and suppressed the structural instability caused by Jahn–Teller distortion, thereby improving the electrochemical performance of the τ-MnO<small><sub>2</sub></small> cathode (capacity retention of 86.7% after 1800 cycles at 1 A g<small><sup>−1</sup></small>).","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heterointerface synergy between a 3 × 3 tunnel τ-MnO2 cathode and Mg2(OH)3Cl·4H2O for achieving long cycle-life aqueous zinc-ion batteries\",\"authors\":\"Fang Xu, Jialin Zheng, Dai-Huo Liu, Ao Wang, Zhenjiang Li, Chunyan Xu, Mengqin Song, Beinuo Zhang, Zhengyu Bai, Zhongwei Chen\",\"doi\":\"10.1039/d4qi02572e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Manganese dioxide is considered an ideal cathode candidate material for aqueous zinc-ion batteries. However, its poor conductivity and nanostructural degeneration impede its further application. Herein, a 3 × 3 tunnel-structured τ-MnO<small><sub>2</sub></small> cathode material was synthesized through the addition of excessive Mg<small><sup>2+</sup></small>. During its preparation, a portion of Mg<small><sup>2+</sup></small> was embedded into the 3 × 3 tunnel of τ-MnO<small><sub>2</sub></small> to stabilize the microstructure, while another portion of Mg<small><sup>2+</sup></small> formed a new phase, <em>i.e.</em>, Mg<small><sub>2</sub></small>(OH)<small><sub>3</sub></small>Cl·4H<small><sub>2</sub></small>O, adjoining τ-MnO<small><sub>2</sub></small>, resulting in a cathode material with heterointerface synergy between τ-MnO<small><sub>2</sub></small> and Mg<small><sub>2</sub></small>(OH)<small><sub>3</sub></small>Cl·4H<small><sub>2</sub></small>O. The charge arrangement of the heterointerface between τ-MnO<small><sub>2</sub></small> and Mg<small><sub>2</sub></small>(OH)<small><sub>3</sub></small>Cl·4H<small><sub>2</sub></small>O enabled more active sites and accelerated ion-diffusion kinetics. The introduction of Mg<small><sub>2</sub></small>(OH)<small><sub>3</sub></small>Cl·4H<small><sub>2</sub></small>O increased the proportion of Mn(<small>IV</small>) and suppressed the structural instability caused by Jahn–Teller distortion, thereby improving the electrochemical performance of the τ-MnO<small><sub>2</sub></small> cathode (capacity retention of 86.7% after 1800 cycles at 1 A g<small><sup>−1</sup></small>).\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4qi02572e\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4qi02572e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二氧化锰被认为是锌离子水电池理想的阴极候选材料。然而,二氧化锰的低导电性和纳米结构退化阻碍了它的进一步应用。本文通过添加过量的 Mg2+ 合成了一种 3 × 3 隧道结构的 τ-MnO2 阴极材料。在制备过程中,一部分Mg2+嵌入τ-MnO2的3 × 3隧道中以稳定微观结构,另一部分Mg2+在τ-MnO2附近形成新相,即Mg2(OH)3Cl-4H2O,从而制备出具有τ-MnO2和Mg2(OH)3Cl-4H2O异质界面协同作用的阴极材料。τ-MnO2和Mg2(OH)3Cl-4H2O之间异质界面的电荷排列产生了更多的活性位点,加速了离子扩散动力学。Mg2(OH)3Cl-4H2O的引入增加了Mn(IV)的比例,抑制了由Jahn-Teller畸变引起的结构不稳定性,从而改善了τ-MnO2阴极的电化学性能(在1 A g-1条件下循环1800次后容量保持率为86.7%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Heterointerface synergy between a 3 × 3 tunnel τ-MnO2 cathode and Mg2(OH)3Cl·4H2O for achieving long cycle-life aqueous zinc-ion batteries

Heterointerface synergy between a 3 × 3 tunnel τ-MnO2 cathode and Mg2(OH)3Cl·4H2O for achieving long cycle-life aqueous zinc-ion batteries
Manganese dioxide is considered an ideal cathode candidate material for aqueous zinc-ion batteries. However, its poor conductivity and nanostructural degeneration impede its further application. Herein, a 3 × 3 tunnel-structured τ-MnO2 cathode material was synthesized through the addition of excessive Mg2+. During its preparation, a portion of Mg2+ was embedded into the 3 × 3 tunnel of τ-MnO2 to stabilize the microstructure, while another portion of Mg2+ formed a new phase, i.e., Mg2(OH)3Cl·4H2O, adjoining τ-MnO2, resulting in a cathode material with heterointerface synergy between τ-MnO2 and Mg2(OH)3Cl·4H2O. The charge arrangement of the heterointerface between τ-MnO2 and Mg2(OH)3Cl·4H2O enabled more active sites and accelerated ion-diffusion kinetics. The introduction of Mg2(OH)3Cl·4H2O increased the proportion of Mn(IV) and suppressed the structural instability caused by Jahn–Teller distortion, thereby improving the electrochemical performance of the τ-MnO2 cathode (capacity retention of 86.7% after 1800 cycles at 1 A g−1).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信