用于有源电力滤波器弹性控制的新型延时滤波器实现方法

IF 3.8 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Abdullahi Bamigbade;Francisco de León
{"title":"用于有源电力滤波器弹性控制的新型延时滤波器实现方法","authors":"Abdullahi Bamigbade;Francisco de León","doi":"10.1109/TPWRD.2024.3488005","DOIUrl":null,"url":null,"abstract":"The increasing penetration of power electronics-based devices has led to reduced power quality in power grids, making effective solutions like active power filters (APFs) essential. To tackle this problem, this article proposes a novel time-delay filter aimed at improving the accuracy of reference current generation (RCG) and enhancing the overall compensation performance of APFs. The proposed filter is implemented as a dual cascaded second-order time-delay (DCSOTD) filter and exhibits exceptional harmonic rejection capabilities and stability properties. It inherently rejects the negative sequence component of an unbalanced and distorted load current, along with the <inline-formula><tex-math>$5^{th}$</tex-math></inline-formula> negative and <inline-formula><tex-math>$7^{th}$</tex-math></inline-formula> positive sequence harmonics. More so, the proposed DCSOTD filter offers two additional design degrees of freedom, enabling the selective rejection of any two harmonic components of the load current and their odd integer multiples. Its delay-independent stability feature makes it well-suited for APF applications that involve a wide range of frequency variations. Comparative performance analysis with DSOGI and DROGI-based RCGs underscores the superior performance of the proposed DCSOTD filter in enhancing power quality, particularly under unbalanced voltage and load conditions. Additionally, its stability is demonstrated in a more electric aircraft grid during a significant frequency variation from 400 Hz to 800 Hz.","PeriodicalId":13498,"journal":{"name":"IEEE Transactions on Power Delivery","volume":"40 1","pages":"191-202"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Time-Delay Filter Implementation for Resilient Control of Active Power Filters\",\"authors\":\"Abdullahi Bamigbade;Francisco de León\",\"doi\":\"10.1109/TPWRD.2024.3488005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing penetration of power electronics-based devices has led to reduced power quality in power grids, making effective solutions like active power filters (APFs) essential. To tackle this problem, this article proposes a novel time-delay filter aimed at improving the accuracy of reference current generation (RCG) and enhancing the overall compensation performance of APFs. The proposed filter is implemented as a dual cascaded second-order time-delay (DCSOTD) filter and exhibits exceptional harmonic rejection capabilities and stability properties. It inherently rejects the negative sequence component of an unbalanced and distorted load current, along with the <inline-formula><tex-math>$5^{th}$</tex-math></inline-formula> negative and <inline-formula><tex-math>$7^{th}$</tex-math></inline-formula> positive sequence harmonics. More so, the proposed DCSOTD filter offers two additional design degrees of freedom, enabling the selective rejection of any two harmonic components of the load current and their odd integer multiples. Its delay-independent stability feature makes it well-suited for APF applications that involve a wide range of frequency variations. Comparative performance analysis with DSOGI and DROGI-based RCGs underscores the superior performance of the proposed DCSOTD filter in enhancing power quality, particularly under unbalanced voltage and load conditions. Additionally, its stability is demonstrated in a more electric aircraft grid during a significant frequency variation from 400 Hz to 800 Hz.\",\"PeriodicalId\":13498,\"journal\":{\"name\":\"IEEE Transactions on Power Delivery\",\"volume\":\"40 1\",\"pages\":\"191-202\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Power Delivery\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10738189/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Power Delivery","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10738189/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Time-Delay Filter Implementation for Resilient Control of Active Power Filters
The increasing penetration of power electronics-based devices has led to reduced power quality in power grids, making effective solutions like active power filters (APFs) essential. To tackle this problem, this article proposes a novel time-delay filter aimed at improving the accuracy of reference current generation (RCG) and enhancing the overall compensation performance of APFs. The proposed filter is implemented as a dual cascaded second-order time-delay (DCSOTD) filter and exhibits exceptional harmonic rejection capabilities and stability properties. It inherently rejects the negative sequence component of an unbalanced and distorted load current, along with the $5^{th}$ negative and $7^{th}$ positive sequence harmonics. More so, the proposed DCSOTD filter offers two additional design degrees of freedom, enabling the selective rejection of any two harmonic components of the load current and their odd integer multiples. Its delay-independent stability feature makes it well-suited for APF applications that involve a wide range of frequency variations. Comparative performance analysis with DSOGI and DROGI-based RCGs underscores the superior performance of the proposed DCSOTD filter in enhancing power quality, particularly under unbalanced voltage and load conditions. Additionally, its stability is demonstrated in a more electric aircraft grid during a significant frequency variation from 400 Hz to 800 Hz.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Power Delivery
IEEE Transactions on Power Delivery 工程技术-工程:电子与电气
CiteScore
9.00
自引率
13.60%
发文量
513
审稿时长
6 months
期刊介绍: The scope of the Society embraces planning, research, development, design, application, construction, installation and operation of apparatus, equipment, structures, materials and systems for the safe, reliable and economic generation, transmission, distribution, conversion, measurement and control of electric energy. It includes the developing of engineering standards, the providing of information and instruction to the public and to legislators, as well as technical scientific, literary, educational and other activities that contribute to the electric power discipline or utilize the techniques or products within this discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信