特殊乔伊斯结构和超卡勒度量

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Iván Tulli
{"title":"特殊乔伊斯结构和超卡勒度量","authors":"Iván Tulli","doi":"10.1007/s11005-024-01871-3","DOIUrl":null,"url":null,"abstract":"<div><p>Joyce structures were introduced by T. Bridgeland in the context of the space of stability conditions of a three-dimensional Calabi–Yau category and its associated Donaldson–Thomas invariants. In subsequent work, T. Bridgeland and I. Strachan showed that Joyce structures satisfying a certain non-degeneracy condition encode a complex hyperkähler structure on the tangent bundle of the base of the Joyce structure. In this work we give a definition of an analogous structure over an affine special Kähler (ASK) manifold, which we call a special Joyce structure. Furthermore, we show that it encodes a real hyperkähler (HK) structure on the tangent bundle of the ASK manifold, possibly of indefinite signature. Particular examples include the semi-flat HK metric associated to an ASK manifold (also known as the rigid c-map metric) and the HK metrics associated to certain uncoupled variations of BPS structures over the ASK manifold. Finally, we relate the HK metrics coming from special Joyce structures to HK metrics on the total space of algebraic integrable systems.\n</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"114 6","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11005-024-01871-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Special Joyce structures and hyperkähler metrics\",\"authors\":\"Iván Tulli\",\"doi\":\"10.1007/s11005-024-01871-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Joyce structures were introduced by T. Bridgeland in the context of the space of stability conditions of a three-dimensional Calabi–Yau category and its associated Donaldson–Thomas invariants. In subsequent work, T. Bridgeland and I. Strachan showed that Joyce structures satisfying a certain non-degeneracy condition encode a complex hyperkähler structure on the tangent bundle of the base of the Joyce structure. In this work we give a definition of an analogous structure over an affine special Kähler (ASK) manifold, which we call a special Joyce structure. Furthermore, we show that it encodes a real hyperkähler (HK) structure on the tangent bundle of the ASK manifold, possibly of indefinite signature. Particular examples include the semi-flat HK metric associated to an ASK manifold (also known as the rigid c-map metric) and the HK metrics associated to certain uncoupled variations of BPS structures over the ASK manifold. Finally, we relate the HK metrics coming from special Joyce structures to HK metrics on the total space of algebraic integrable systems.\\n</p></div>\",\"PeriodicalId\":685,\"journal\":{\"name\":\"Letters in Mathematical Physics\",\"volume\":\"114 6\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11005-024-01871-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11005-024-01871-3\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-024-01871-3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

乔伊斯结构是由布里奇兰(T. Bridgeland)在三维卡拉比优范畴的稳定性条件空间及其相关的唐纳森-托马斯不变式的背景下提出的。在随后的工作中,T. Bridgeland 和 I. Strachan 证明了满足特定非退化条件的乔伊斯结构编码了乔伊斯结构基切线束上的复杂超卡勒结构。在这项研究中,我们给出了仿射特殊凯勒(ASK)流形上类似结构的定义,并称之为特殊乔伊斯结构。此外,我们还证明它在 ASK 流形的切线束上编码了一个实超凯勒(HK)结构,可能是不定签名的。具体例子包括与 ASK 流形相关的半平面 HK 度量(也称为刚性 c 映射度量),以及与 ASK 流形上 BPS 结构的某些非耦合变化相关的 HK 度量。最后,我们将来自特殊乔伊斯结构的HK度量与代数可积分系统总空间上的HK度量联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Special Joyce structures and hyperkähler metrics

Joyce structures were introduced by T. Bridgeland in the context of the space of stability conditions of a three-dimensional Calabi–Yau category and its associated Donaldson–Thomas invariants. In subsequent work, T. Bridgeland and I. Strachan showed that Joyce structures satisfying a certain non-degeneracy condition encode a complex hyperkähler structure on the tangent bundle of the base of the Joyce structure. In this work we give a definition of an analogous structure over an affine special Kähler (ASK) manifold, which we call a special Joyce structure. Furthermore, we show that it encodes a real hyperkähler (HK) structure on the tangent bundle of the ASK manifold, possibly of indefinite signature. Particular examples include the semi-flat HK metric associated to an ASK manifold (also known as the rigid c-map metric) and the HK metrics associated to certain uncoupled variations of BPS structures over the ASK manifold. Finally, we relate the HK metrics coming from special Joyce structures to HK metrics on the total space of algebraic integrable systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Letters in Mathematical Physics
Letters in Mathematical Physics 物理-物理:数学物理
CiteScore
2.40
自引率
8.30%
发文量
111
审稿时长
3 months
期刊介绍: The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信