将技术特性与经济和社会可持续性相关特征相结合的城市农业分类方案

IF 6.4 1区 农林科学 Q1 AGRONOMY
Mélanie Douziech, Stefan Mann, Stefan Galley, Jens Lansche
{"title":"将技术特性与经济和社会可持续性相关特征相结合的城市农业分类方案","authors":"Mélanie Douziech,&nbsp;Stefan Mann,&nbsp;Stefan Galley,&nbsp;Jens Lansche","doi":"10.1007/s13593-024-00990-4","DOIUrl":null,"url":null,"abstract":"<div><p>Urban agriculture is often associated with sustainable agricultural practices. However, the variety of systems qualifying as urban agriculture and the limited information available about their sustainability question this direct relationship. To better understand differences in intra-urban agriculture systems and their sustainability, this paper proposed an holistic classification of urban agricultural systems and collected knowledge about the environmental, social, and economic sustainability of these systems. Such a classification is important to evaluate sustainability claims on urban agricultural systems, anticipate potential sustainability trade-offs between urban agricultural systems and propose preventive measures to address these, and ultimately guide the sustainable deployment of these systems. Compared with existing classifications, the novel classification scheme proposed here accounts for technological, social and economic characteristics of urban agriculture systems to better distinguish between all systems. It was built on 91 scientific papers. The economic intensity of production was, for example, an important characteristic to coherently group urban agriculture systems. The intensity of cooperation between all actors was another characteristic emphasized for certain urban agriculture systems. One end of the classification scheme describes ground-based open, socially motivated urban agriculture systems with high cooperation intensity and low production intensity. The other end of the classification scheme describes building-integrated quasi-closed systems with high production intensity. In between, we find: building-integrated conditioned systems, ground-based conditioned systems, and building-integrated open systems. Mapping sustainability claims from literature in the classification scheme supported its definition along the three characteristics. For example, urban farming was associated with job creation, food safety, water savings, and higher yields while urban gardening with educational potentials, biodiversity improvements, and lower yields. Their display in the classification scheme was therefore supported. To further support the use of the proposed scheme, additional quantitative research to better understand and quantify the sustainability of urban agriculture systems is required.</p></div>","PeriodicalId":7721,"journal":{"name":"Agronomy for Sustainable Development","volume":"44 6","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13593-024-00990-4.pdf","citationCount":"0","resultStr":"{\"title\":\"A classification scheme for urban agriculture combining technical properties with characteristics related to the economic and social sustainability\",\"authors\":\"Mélanie Douziech,&nbsp;Stefan Mann,&nbsp;Stefan Galley,&nbsp;Jens Lansche\",\"doi\":\"10.1007/s13593-024-00990-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Urban agriculture is often associated with sustainable agricultural practices. However, the variety of systems qualifying as urban agriculture and the limited information available about their sustainability question this direct relationship. To better understand differences in intra-urban agriculture systems and their sustainability, this paper proposed an holistic classification of urban agricultural systems and collected knowledge about the environmental, social, and economic sustainability of these systems. Such a classification is important to evaluate sustainability claims on urban agricultural systems, anticipate potential sustainability trade-offs between urban agricultural systems and propose preventive measures to address these, and ultimately guide the sustainable deployment of these systems. Compared with existing classifications, the novel classification scheme proposed here accounts for technological, social and economic characteristics of urban agriculture systems to better distinguish between all systems. It was built on 91 scientific papers. The economic intensity of production was, for example, an important characteristic to coherently group urban agriculture systems. The intensity of cooperation between all actors was another characteristic emphasized for certain urban agriculture systems. One end of the classification scheme describes ground-based open, socially motivated urban agriculture systems with high cooperation intensity and low production intensity. The other end of the classification scheme describes building-integrated quasi-closed systems with high production intensity. In between, we find: building-integrated conditioned systems, ground-based conditioned systems, and building-integrated open systems. Mapping sustainability claims from literature in the classification scheme supported its definition along the three characteristics. For example, urban farming was associated with job creation, food safety, water savings, and higher yields while urban gardening with educational potentials, biodiversity improvements, and lower yields. Their display in the classification scheme was therefore supported. To further support the use of the proposed scheme, additional quantitative research to better understand and quantify the sustainability of urban agriculture systems is required.</p></div>\",\"PeriodicalId\":7721,\"journal\":{\"name\":\"Agronomy for Sustainable Development\",\"volume\":\"44 6\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13593-024-00990-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agronomy for Sustainable Development\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13593-024-00990-4\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agronomy for Sustainable Development","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s13593-024-00990-4","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

城市农业通常与可持续农业实践联系在一起。然而,城市农业系统种类繁多,有关其可持续性的信息有限,这就对这种直接关系提出了质疑。为了更好地了解城市内部农业系统的差异及其可持续性,本文提出了城市农业系统的整体分类,并收集了有关这些系统的环境、社会和经济可持续性的知识。这种分类对于评估城市农业系统的可持续性要求、预测城市农业系统之间潜在的可持续性权衡、提出预防措施以解决这些问题,以及最终指导这些系统的可持续部署都非常重要。与现有的分类方法相比,本文提出的新分类方法考虑了都市农业系统的技术、社会和经济特征,以更好地区分所有系统。该方案以 91 篇科学论文为基础。例如,生产的经济强度是对都市农业系统进行统一分组的一个重要特征。所有参与者之间的合作强度是某些都市农业系统强调的另一个特征。分类方案的一端描述了以地面为基础的开放式、以社会为动力的都市农业系统,其合作强度高而生产强度低。分类方案的另一端描述了生产强度高的建筑一体化准封闭系统。在这两者之间,我们发现了:建筑一体化条件系统、地面条件系统和建筑一体化开放系统。将文献中的可持续发展主张映射到分类方案中,支持根据这三个特征对其进行定义。例如,城市耕作与创造就业、食品安全、节水和高产有关,而城市园艺则与教育潜力、生物多样性改善和低产有关。因此,它们在分类方案中的显示得到了支持。为了进一步支持拟议方案的使用,需要开展更多的定量研究,以更好地了解和量化城市农业系统的可持续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A classification scheme for urban agriculture combining technical properties with characteristics related to the economic and social sustainability

A classification scheme for urban agriculture combining technical properties with characteristics related to the economic and social sustainability

Urban agriculture is often associated with sustainable agricultural practices. However, the variety of systems qualifying as urban agriculture and the limited information available about their sustainability question this direct relationship. To better understand differences in intra-urban agriculture systems and their sustainability, this paper proposed an holistic classification of urban agricultural systems and collected knowledge about the environmental, social, and economic sustainability of these systems. Such a classification is important to evaluate sustainability claims on urban agricultural systems, anticipate potential sustainability trade-offs between urban agricultural systems and propose preventive measures to address these, and ultimately guide the sustainable deployment of these systems. Compared with existing classifications, the novel classification scheme proposed here accounts for technological, social and economic characteristics of urban agriculture systems to better distinguish between all systems. It was built on 91 scientific papers. The economic intensity of production was, for example, an important characteristic to coherently group urban agriculture systems. The intensity of cooperation between all actors was another characteristic emphasized for certain urban agriculture systems. One end of the classification scheme describes ground-based open, socially motivated urban agriculture systems with high cooperation intensity and low production intensity. The other end of the classification scheme describes building-integrated quasi-closed systems with high production intensity. In between, we find: building-integrated conditioned systems, ground-based conditioned systems, and building-integrated open systems. Mapping sustainability claims from literature in the classification scheme supported its definition along the three characteristics. For example, urban farming was associated with job creation, food safety, water savings, and higher yields while urban gardening with educational potentials, biodiversity improvements, and lower yields. Their display in the classification scheme was therefore supported. To further support the use of the proposed scheme, additional quantitative research to better understand and quantify the sustainability of urban agriculture systems is required.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Agronomy for Sustainable Development
Agronomy for Sustainable Development 农林科学-农艺学
CiteScore
10.70
自引率
8.20%
发文量
108
审稿时长
3 months
期刊介绍: Agronomy for Sustainable Development (ASD) is a peer-reviewed scientific journal of international scope, dedicated to publishing original research articles, review articles, and meta-analyses aimed at improving sustainability in agricultural and food systems. The journal serves as a bridge between agronomy, cropping, and farming system research and various other disciplines including ecology, genetics, economics, and social sciences. ASD encourages studies in agroecology, participatory research, and interdisciplinary approaches, with a focus on systems thinking applied at different scales from field to global levels. Research articles published in ASD should present significant scientific advancements compared to existing knowledge, within an international context. Review articles should critically evaluate emerging topics, and opinion papers may also be submitted as reviews. Meta-analysis articles should provide clear contributions to resolving widely debated scientific questions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信