Gabriel M. Domingues Filho;Caetano M. Ranieri;Saulo Neves Matos;Rodolfo Ipolito Meneguette;Jó Ueyama
{"title":"利用模式化视觉标记进行水位测量的深度学习和目标检测","authors":"Gabriel M. Domingues Filho;Caetano M. Ranieri;Saulo Neves Matos;Rodolfo Ipolito Meneguette;Jó Ueyama","doi":"10.1109/TLA.2024.10738344","DOIUrl":null,"url":null,"abstract":"Flooding is one of the most impactful natural disasters, causing significant losses and prompting extensive research into monitoring water levels in urban streams. Current technologies rely on pressure and ultrasonic sensors, which, while accurate, can be susceptible to damage from floods and are often costly. As an alternative, ground camera approaches offer a low-cost solution; however, most of these methods use raw images from the water stream and are sensitive to environmental factors. We address this gap with a dataset comprising a visual marker with black bars indicating the water level, which we refer to as \"barcode panel\". We employed various deep learning algorithms to predict the water level and compared their performance. The proposed approach was evaluated using classic classification and error metrics. The models demonstrated accuracy in detecting the water level. These promising results provide important insights for practical applications and future studies.","PeriodicalId":55024,"journal":{"name":"IEEE Latin America Transactions","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10738344","citationCount":"0","resultStr":"{\"title\":\"Deep Learning and object detection for water level measurement using patterned visual markers\",\"authors\":\"Gabriel M. Domingues Filho;Caetano M. Ranieri;Saulo Neves Matos;Rodolfo Ipolito Meneguette;Jó Ueyama\",\"doi\":\"10.1109/TLA.2024.10738344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flooding is one of the most impactful natural disasters, causing significant losses and prompting extensive research into monitoring water levels in urban streams. Current technologies rely on pressure and ultrasonic sensors, which, while accurate, can be susceptible to damage from floods and are often costly. As an alternative, ground camera approaches offer a low-cost solution; however, most of these methods use raw images from the water stream and are sensitive to environmental factors. We address this gap with a dataset comprising a visual marker with black bars indicating the water level, which we refer to as \\\"barcode panel\\\". We employed various deep learning algorithms to predict the water level and compared their performance. The proposed approach was evaluated using classic classification and error metrics. The models demonstrated accuracy in detecting the water level. These promising results provide important insights for practical applications and future studies.\",\"PeriodicalId\":55024,\"journal\":{\"name\":\"IEEE Latin America Transactions\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10738344\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Latin America Transactions\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10738344/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Latin America Transactions","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10738344/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Deep Learning and object detection for water level measurement using patterned visual markers
Flooding is one of the most impactful natural disasters, causing significant losses and prompting extensive research into monitoring water levels in urban streams. Current technologies rely on pressure and ultrasonic sensors, which, while accurate, can be susceptible to damage from floods and are often costly. As an alternative, ground camera approaches offer a low-cost solution; however, most of these methods use raw images from the water stream and are sensitive to environmental factors. We address this gap with a dataset comprising a visual marker with black bars indicating the water level, which we refer to as "barcode panel". We employed various deep learning algorithms to predict the water level and compared their performance. The proposed approach was evaluated using classic classification and error metrics. The models demonstrated accuracy in detecting the water level. These promising results provide important insights for practical applications and future studies.
期刊介绍:
IEEE Latin America Transactions (IEEE LATAM) is an interdisciplinary journal focused on the dissemination of original and quality research papers / review articles in Spanish and Portuguese of emerging topics in three main areas: Computing, Electric Energy and Electronics. Some of the sub-areas of the journal are, but not limited to: Automatic control, communications, instrumentation, artificial intelligence, power and industrial electronics, fault diagnosis and detection, transportation electrification, internet of things, electrical machines, circuits and systems, biomedicine and biomedical / haptic applications, secure communications, robotics, sensors and actuators, computer networks, smart grids, among others.