Jun Liu , Shaozhen Chen , Hui Li , Dian Li , Xiaonong Guo
{"title":"铝合金门式框架顶点接头抗弯行为的实验和数值研究","authors":"Jun Liu , Shaozhen Chen , Hui Li , Dian Li , Xiaonong Guo","doi":"10.1016/j.istruc.2024.107596","DOIUrl":null,"url":null,"abstract":"<div><div>Aluminum alloy portal frames (AAPFs) find extensive applications in lightweight and temporary structures owing to their light weight, excellent corrosion resistance, and ease of installation and disassembly. Existing design equations for cold-formed steel portal frame (CFSPF) apex joints are not applicable to AAPF apex joints due to significant differences in structural configuration. Therefore, dedicated research is needed to develop design guidelines for AAPF apex joints. Consequently, this paper conducts experimental and numerical investigations on flexural behavior of AAPF apex joints. Initially, bending tests are conducted on three AAPF apex joints, revealing failure modes including clamping plate buckling and beam failure. The flexural behavior of apex joints throughout the entire process is analyzed based on moment-rotation curves and moment-strain curves. Subsequently, finite element (FE) models are established and validated by comparing the FE results with the experimental results. Following this validation, parameter analysis is conducted considering the influence of beam cross-sectional dimensions, clamping plate dimensions, bolt dimensions, and layout. Finally, based on theoretical and numerical investigation, the calculation equation for the flexural capacity of AAPF joints is derived, offering valuable reference for engineering design.</div></div>","PeriodicalId":48642,"journal":{"name":"Structures","volume":"70 ","pages":"Article 107596"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and numerical investigations on flexural behavior of apex joints in aluminum alloy portal frames\",\"authors\":\"Jun Liu , Shaozhen Chen , Hui Li , Dian Li , Xiaonong Guo\",\"doi\":\"10.1016/j.istruc.2024.107596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Aluminum alloy portal frames (AAPFs) find extensive applications in lightweight and temporary structures owing to their light weight, excellent corrosion resistance, and ease of installation and disassembly. Existing design equations for cold-formed steel portal frame (CFSPF) apex joints are not applicable to AAPF apex joints due to significant differences in structural configuration. Therefore, dedicated research is needed to develop design guidelines for AAPF apex joints. Consequently, this paper conducts experimental and numerical investigations on flexural behavior of AAPF apex joints. Initially, bending tests are conducted on three AAPF apex joints, revealing failure modes including clamping plate buckling and beam failure. The flexural behavior of apex joints throughout the entire process is analyzed based on moment-rotation curves and moment-strain curves. Subsequently, finite element (FE) models are established and validated by comparing the FE results with the experimental results. Following this validation, parameter analysis is conducted considering the influence of beam cross-sectional dimensions, clamping plate dimensions, bolt dimensions, and layout. Finally, based on theoretical and numerical investigation, the calculation equation for the flexural capacity of AAPF joints is derived, offering valuable reference for engineering design.</div></div>\",\"PeriodicalId\":48642,\"journal\":{\"name\":\"Structures\",\"volume\":\"70 \",\"pages\":\"Article 107596\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352012424017491\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352012424017491","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Experimental and numerical investigations on flexural behavior of apex joints in aluminum alloy portal frames
Aluminum alloy portal frames (AAPFs) find extensive applications in lightweight and temporary structures owing to their light weight, excellent corrosion resistance, and ease of installation and disassembly. Existing design equations for cold-formed steel portal frame (CFSPF) apex joints are not applicable to AAPF apex joints due to significant differences in structural configuration. Therefore, dedicated research is needed to develop design guidelines for AAPF apex joints. Consequently, this paper conducts experimental and numerical investigations on flexural behavior of AAPF apex joints. Initially, bending tests are conducted on three AAPF apex joints, revealing failure modes including clamping plate buckling and beam failure. The flexural behavior of apex joints throughout the entire process is analyzed based on moment-rotation curves and moment-strain curves. Subsequently, finite element (FE) models are established and validated by comparing the FE results with the experimental results. Following this validation, parameter analysis is conducted considering the influence of beam cross-sectional dimensions, clamping plate dimensions, bolt dimensions, and layout. Finally, based on theoretical and numerical investigation, the calculation equation for the flexural capacity of AAPF joints is derived, offering valuable reference for engineering design.
期刊介绍:
Structures aims to publish internationally-leading research across the full breadth of structural engineering. Papers for Structures are particularly welcome in which high-quality research will benefit from wide readership of academics and practitioners such that not only high citation rates but also tangible industrial-related pathways to impact are achieved.