Yarong Chen, Jinhao Du, Jabir Mumtaz, Jingyan Zhong, Mudassar Rauf
{"title":"一种高效的 Q-learning 集成多目标超启发式方法,适用于具有批量流的混合流水车间调度问题","authors":"Yarong Chen, Jinhao Du, Jabir Mumtaz, Jingyan Zhong, Mudassar Rauf","doi":"10.1016/j.eswa.2024.125616","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient scheduling in flow shop environments with lot streaming remains a critical challenge in various industrial settings, necessitating innovative approaches to optimize production processes. This study investigates a hybrid flow shop scheduling problem dominant in real-world printed circuit board assembly shops. A novel multi-objective hyper-heuristic combining Q-learning, i.e., two-stage improved spider monkey optimization (TS-ISMO), is tailored to address the complexities of the flow shop scheduling problems. The proposed method aims to simultaneously optimize conflicting objectives such as minimizing makespan, total energy consumption, and total tardiness time while incorporating lot streaming considerations. For multi-objective hyper-heuristic techniques, the algorithm dynamically selects and adapts a diverse set of low-level heuristics to explore the solution space comprehensively and strike a balance among competing objectives. The proposed TS-ISMO algorithm incorporates several significant features aimed at enhancing its performance. These features encompass hybrid heuristics for solution initialization, a contribution value method for comprehensive convergence and diversity assessment, diverse evolutionary state judgments to promote the algorithm’s balance between exploration and exploitation capabilities, and a Q-learning strategy for self-adaptive parameter tuning. The integration of Q-learning facilitates intelligent parameter control, enabling the algorithm to autonomously adjust its behavior based on past experiences and evolution dynamics. This adaptive mechanism enhances convergence speed and solution quality by effectively guiding the search process toward promising regions of the solution space. Extensive computational experiments are conducted on benchmark instances of hybrid flow shop scheduling problems with lot streaming to evaluate the performance of the proposed algorithm. Comparative analyses against state-of-the-art approaches demonstrate its superior solution quality and computational efficiency.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"262 ","pages":"Article 125616"},"PeriodicalIF":7.5000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An efficient Q-learning integrated multi-objective hyper-heuristic approach for hybrid flow shop scheduling problems with lot streaming\",\"authors\":\"Yarong Chen, Jinhao Du, Jabir Mumtaz, Jingyan Zhong, Mudassar Rauf\",\"doi\":\"10.1016/j.eswa.2024.125616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Efficient scheduling in flow shop environments with lot streaming remains a critical challenge in various industrial settings, necessitating innovative approaches to optimize production processes. This study investigates a hybrid flow shop scheduling problem dominant in real-world printed circuit board assembly shops. A novel multi-objective hyper-heuristic combining Q-learning, i.e., two-stage improved spider monkey optimization (TS-ISMO), is tailored to address the complexities of the flow shop scheduling problems. The proposed method aims to simultaneously optimize conflicting objectives such as minimizing makespan, total energy consumption, and total tardiness time while incorporating lot streaming considerations. For multi-objective hyper-heuristic techniques, the algorithm dynamically selects and adapts a diverse set of low-level heuristics to explore the solution space comprehensively and strike a balance among competing objectives. The proposed TS-ISMO algorithm incorporates several significant features aimed at enhancing its performance. These features encompass hybrid heuristics for solution initialization, a contribution value method for comprehensive convergence and diversity assessment, diverse evolutionary state judgments to promote the algorithm’s balance between exploration and exploitation capabilities, and a Q-learning strategy for self-adaptive parameter tuning. The integration of Q-learning facilitates intelligent parameter control, enabling the algorithm to autonomously adjust its behavior based on past experiences and evolution dynamics. This adaptive mechanism enhances convergence speed and solution quality by effectively guiding the search process toward promising regions of the solution space. Extensive computational experiments are conducted on benchmark instances of hybrid flow shop scheduling problems with lot streaming to evaluate the performance of the proposed algorithm. Comparative analyses against state-of-the-art approaches demonstrate its superior solution quality and computational efficiency.</div></div>\",\"PeriodicalId\":50461,\"journal\":{\"name\":\"Expert Systems with Applications\",\"volume\":\"262 \",\"pages\":\"Article 125616\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Systems with Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957417424024837\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417424024837","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
An efficient Q-learning integrated multi-objective hyper-heuristic approach for hybrid flow shop scheduling problems with lot streaming
Efficient scheduling in flow shop environments with lot streaming remains a critical challenge in various industrial settings, necessitating innovative approaches to optimize production processes. This study investigates a hybrid flow shop scheduling problem dominant in real-world printed circuit board assembly shops. A novel multi-objective hyper-heuristic combining Q-learning, i.e., two-stage improved spider monkey optimization (TS-ISMO), is tailored to address the complexities of the flow shop scheduling problems. The proposed method aims to simultaneously optimize conflicting objectives such as minimizing makespan, total energy consumption, and total tardiness time while incorporating lot streaming considerations. For multi-objective hyper-heuristic techniques, the algorithm dynamically selects and adapts a diverse set of low-level heuristics to explore the solution space comprehensively and strike a balance among competing objectives. The proposed TS-ISMO algorithm incorporates several significant features aimed at enhancing its performance. These features encompass hybrid heuristics for solution initialization, a contribution value method for comprehensive convergence and diversity assessment, diverse evolutionary state judgments to promote the algorithm’s balance between exploration and exploitation capabilities, and a Q-learning strategy for self-adaptive parameter tuning. The integration of Q-learning facilitates intelligent parameter control, enabling the algorithm to autonomously adjust its behavior based on past experiences and evolution dynamics. This adaptive mechanism enhances convergence speed and solution quality by effectively guiding the search process toward promising regions of the solution space. Extensive computational experiments are conducted on benchmark instances of hybrid flow shop scheduling problems with lot streaming to evaluate the performance of the proposed algorithm. Comparative analyses against state-of-the-art approaches demonstrate its superior solution quality and computational efficiency.
期刊介绍:
Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.