基于机器学习的混凝土填充钢管 (CFST) 柱轴向承载力概率预测

IF 3.9 2区 工程技术 Q1 ENGINEERING, CIVIL
Dade Lai , Jingyu Wei , Alessandro Contento , Junqing Xue , Bruno Briseghella , Tommaso Albanesi , Cristoforo Demartino
{"title":"基于机器学习的混凝土填充钢管 (CFST) 柱轴向承载力概率预测","authors":"Dade Lai ,&nbsp;Jingyu Wei ,&nbsp;Alessandro Contento ,&nbsp;Junqing Xue ,&nbsp;Bruno Briseghella ,&nbsp;Tommaso Albanesi ,&nbsp;Cristoforo Demartino","doi":"10.1016/j.istruc.2024.107543","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a novel probabilistic machine learning (ML) approach using Natural Gradient Boosting (NGBoost) to predict the axial compressive capacity of Concrete Filled Steel Tube (CFST) columns. Leveraging a comprehensive dataset of 1,127 experimentally tested CFST specimens under axial compressive loads, we compare the performance of various ML algorithms. These include deterministic models like eXtreme Gradient Boosting (XGBoost) and Artificial Neural Networks (ANN), and probabilistic models such as XGBoost-Distribution (XGBD) and NGBoost. The NGBoost model, which employs Normal and LogNormal distributions to account for uncertainties in input data, demonstrates superior predictive accuracy and robustness. SHapley Additive exPlanations (SHAP) are utilized to interpret the influence of input features, providing insights into the relative importance of different structural parameters. The predictive performance of the NGBoost model with LogNormal distribution is benchmarked against existing design codes, including Eurocode 4, ANSI/AISC 360-22 AS/NZS 2327, and Chinese Standard (GB50936-2014), showcasing its enhanced accuracy and reliability. This approach not only improves predictive performances but also integrates uncertainty quantification, making it highly suitable for design applications in Civil Engineering where understanding the variability in the structural behavior is crucial.</div></div>","PeriodicalId":48642,"journal":{"name":"Structures","volume":"70 ","pages":"Article 107543"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning-based probabilistic predictions for Concrete Filled Steel Tube (CFST) column axial capacity\",\"authors\":\"Dade Lai ,&nbsp;Jingyu Wei ,&nbsp;Alessandro Contento ,&nbsp;Junqing Xue ,&nbsp;Bruno Briseghella ,&nbsp;Tommaso Albanesi ,&nbsp;Cristoforo Demartino\",\"doi\":\"10.1016/j.istruc.2024.107543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a novel probabilistic machine learning (ML) approach using Natural Gradient Boosting (NGBoost) to predict the axial compressive capacity of Concrete Filled Steel Tube (CFST) columns. Leveraging a comprehensive dataset of 1,127 experimentally tested CFST specimens under axial compressive loads, we compare the performance of various ML algorithms. These include deterministic models like eXtreme Gradient Boosting (XGBoost) and Artificial Neural Networks (ANN), and probabilistic models such as XGBoost-Distribution (XGBD) and NGBoost. The NGBoost model, which employs Normal and LogNormal distributions to account for uncertainties in input data, demonstrates superior predictive accuracy and robustness. SHapley Additive exPlanations (SHAP) are utilized to interpret the influence of input features, providing insights into the relative importance of different structural parameters. The predictive performance of the NGBoost model with LogNormal distribution is benchmarked against existing design codes, including Eurocode 4, ANSI/AISC 360-22 AS/NZS 2327, and Chinese Standard (GB50936-2014), showcasing its enhanced accuracy and reliability. This approach not only improves predictive performances but also integrates uncertainty quantification, making it highly suitable for design applications in Civil Engineering where understanding the variability in the structural behavior is crucial.</div></div>\",\"PeriodicalId\":48642,\"journal\":{\"name\":\"Structures\",\"volume\":\"70 \",\"pages\":\"Article 107543\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352012424016965\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352012424016965","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用自然梯度提升(NGBoost)技术,提出了一种新型概率机器学习(ML)方法,用于预测混凝土填充钢管(CFST)柱的轴向抗压能力。利用 1,127 个经过轴向压缩载荷实验测试的 CFST 试样组成的综合数据集,我们比较了各种 ML 算法的性能。这些算法包括确定性模型,如极端梯度提升(XGBoost)和人工神经网络(ANN),以及概率模型,如 XGBoost-分布(XGBD)和 NGBoost。NGBoost 模型采用正态分布和对数正态分布来考虑输入数据中的不确定性,显示出卓越的预测准确性和鲁棒性。SHapley Additive exPlanations(SHAP)用于解释输入特征的影响,提供了对不同结构参数相对重要性的深入了解。采用对数正态分布的 NGBoost 模型的预测性能以现有设计规范为基准,包括欧洲规范 4、ANSI/AISC 360-22 AS/NZS 2327 和中国标准(GB50936-2014),展示了其更高的准确性和可靠性。这种方法不仅提高了预测性能,还集成了不确定性量化功能,因此非常适合土木工程领域的设计应用,在这些应用中,了解结构行为的可变性至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning-based probabilistic predictions for Concrete Filled Steel Tube (CFST) column axial capacity
This study presents a novel probabilistic machine learning (ML) approach using Natural Gradient Boosting (NGBoost) to predict the axial compressive capacity of Concrete Filled Steel Tube (CFST) columns. Leveraging a comprehensive dataset of 1,127 experimentally tested CFST specimens under axial compressive loads, we compare the performance of various ML algorithms. These include deterministic models like eXtreme Gradient Boosting (XGBoost) and Artificial Neural Networks (ANN), and probabilistic models such as XGBoost-Distribution (XGBD) and NGBoost. The NGBoost model, which employs Normal and LogNormal distributions to account for uncertainties in input data, demonstrates superior predictive accuracy and robustness. SHapley Additive exPlanations (SHAP) are utilized to interpret the influence of input features, providing insights into the relative importance of different structural parameters. The predictive performance of the NGBoost model with LogNormal distribution is benchmarked against existing design codes, including Eurocode 4, ANSI/AISC 360-22 AS/NZS 2327, and Chinese Standard (GB50936-2014), showcasing its enhanced accuracy and reliability. This approach not only improves predictive performances but also integrates uncertainty quantification, making it highly suitable for design applications in Civil Engineering where understanding the variability in the structural behavior is crucial.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structures
Structures Engineering-Architecture
CiteScore
5.70
自引率
17.10%
发文量
1187
期刊介绍: Structures aims to publish internationally-leading research across the full breadth of structural engineering. Papers for Structures are particularly welcome in which high-quality research will benefit from wide readership of academics and practitioners such that not only high citation rates but also tangible industrial-related pathways to impact are achieved.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信