Xiangtao Zhao , Chao Qi , Jianhua Zhu , Dianpeng Su , Fanlin Yang , Jinshan Zhu
{"title":"结合深度不变指数和自适应对数比率的卫星水深测量方法:西沙群岛无现场测量的案例研究","authors":"Xiangtao Zhao , Chao Qi , Jianhua Zhu , Dianpeng Su , Fanlin Yang , Jinshan Zhu","doi":"10.1016/j.jag.2024.104232","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate bathymetric data is crucial for various aspects such as marine resource exploitation and marine ecological conservation. Currently, satellite-derived bathymetry (SDB) based on empirical and physical models has been widely utilized in constructing underwater terrain in shallow seas. However, the application of such SDB models is limited in remote island reef areas lacking <em>in-situ</em> measurement data. To overcome this issue, the manuscript proposes an unconstrained SDB optimization method without <em>in-situ</em> measurement data, utilizing satellite multispectral imagery (Geoeye-1) and spaceborne LiDAR data (ICESat-2). By classifying the seafloor substrate in coral reef areas into sandy and coral, based on the depth invariant index (DII), we employ an adaptive logarithmic ratio model for unconstrained SDB. The ICESat-2 LiDAR data are then used to correct the SDB results, achieving bathymetry optimization in the coral reef area of the Xisha Islands. Additionally, the proposed method is applied to Yuanzhi Island of the Xisha Islands, and the accuracy of the bathymetric results is evaluated against ALB (Airborne LiDAR Bathymetry) data. The findings demonstrate that compared to conventional methods, our method can improve the accuracy of SDB results with good adaptability. In the Yuanzhi Island area, the proposed method yields SDB results with an R<sup>2</sup> of 0.93, an MAE (Mean Absolute Error) of 0.94, and an RMSE (Root Mean Square Error) of 1.12 m, compared to ALB data. The average error is less than 10 % of the maximum depth, essentially meeting the requirements of the International Hydrographic Organization (IHO) standards for depth measurement error when depth is <20 m. This study can offer a novel approach for enhancing bathymetric accuracy around offshore and remote islands, where gathering underwater terrain data is challenging.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"134 ","pages":"Article 104232"},"PeriodicalIF":7.6000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A satellite-derived bathymetry method combining depth invariant index and adaptive logarithmic ratio: A case study in the Xisha Islands without in-situ measurements\",\"authors\":\"Xiangtao Zhao , Chao Qi , Jianhua Zhu , Dianpeng Su , Fanlin Yang , Jinshan Zhu\",\"doi\":\"10.1016/j.jag.2024.104232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate bathymetric data is crucial for various aspects such as marine resource exploitation and marine ecological conservation. Currently, satellite-derived bathymetry (SDB) based on empirical and physical models has been widely utilized in constructing underwater terrain in shallow seas. However, the application of such SDB models is limited in remote island reef areas lacking <em>in-situ</em> measurement data. To overcome this issue, the manuscript proposes an unconstrained SDB optimization method without <em>in-situ</em> measurement data, utilizing satellite multispectral imagery (Geoeye-1) and spaceborne LiDAR data (ICESat-2). By classifying the seafloor substrate in coral reef areas into sandy and coral, based on the depth invariant index (DII), we employ an adaptive logarithmic ratio model for unconstrained SDB. The ICESat-2 LiDAR data are then used to correct the SDB results, achieving bathymetry optimization in the coral reef area of the Xisha Islands. Additionally, the proposed method is applied to Yuanzhi Island of the Xisha Islands, and the accuracy of the bathymetric results is evaluated against ALB (Airborne LiDAR Bathymetry) data. The findings demonstrate that compared to conventional methods, our method can improve the accuracy of SDB results with good adaptability. In the Yuanzhi Island area, the proposed method yields SDB results with an R<sup>2</sup> of 0.93, an MAE (Mean Absolute Error) of 0.94, and an RMSE (Root Mean Square Error) of 1.12 m, compared to ALB data. The average error is less than 10 % of the maximum depth, essentially meeting the requirements of the International Hydrographic Organization (IHO) standards for depth measurement error when depth is <20 m. This study can offer a novel approach for enhancing bathymetric accuracy around offshore and remote islands, where gathering underwater terrain data is challenging.</div></div>\",\"PeriodicalId\":73423,\"journal\":{\"name\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"volume\":\"134 \",\"pages\":\"Article 104232\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569843224005880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843224005880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
A satellite-derived bathymetry method combining depth invariant index and adaptive logarithmic ratio: A case study in the Xisha Islands without in-situ measurements
Accurate bathymetric data is crucial for various aspects such as marine resource exploitation and marine ecological conservation. Currently, satellite-derived bathymetry (SDB) based on empirical and physical models has been widely utilized in constructing underwater terrain in shallow seas. However, the application of such SDB models is limited in remote island reef areas lacking in-situ measurement data. To overcome this issue, the manuscript proposes an unconstrained SDB optimization method without in-situ measurement data, utilizing satellite multispectral imagery (Geoeye-1) and spaceborne LiDAR data (ICESat-2). By classifying the seafloor substrate in coral reef areas into sandy and coral, based on the depth invariant index (DII), we employ an adaptive logarithmic ratio model for unconstrained SDB. The ICESat-2 LiDAR data are then used to correct the SDB results, achieving bathymetry optimization in the coral reef area of the Xisha Islands. Additionally, the proposed method is applied to Yuanzhi Island of the Xisha Islands, and the accuracy of the bathymetric results is evaluated against ALB (Airborne LiDAR Bathymetry) data. The findings demonstrate that compared to conventional methods, our method can improve the accuracy of SDB results with good adaptability. In the Yuanzhi Island area, the proposed method yields SDB results with an R2 of 0.93, an MAE (Mean Absolute Error) of 0.94, and an RMSE (Root Mean Square Error) of 1.12 m, compared to ALB data. The average error is less than 10 % of the maximum depth, essentially meeting the requirements of the International Hydrographic Organization (IHO) standards for depth measurement error when depth is <20 m. This study can offer a novel approach for enhancing bathymetric accuracy around offshore and remote islands, where gathering underwater terrain data is challenging.
期刊介绍:
The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.