实现卓越的安卓勒索软件检测:集合机器学习视角

Md. Alamgir Hossain , Tahmid Hasan , Fahad Ahmed , Sheikh Hasib Cheragee , Muntasir Hasan Kanchan , Md Alimul Haque
{"title":"实现卓越的安卓勒索软件检测:集合机器学习视角","authors":"Md. Alamgir Hossain ,&nbsp;Tahmid Hasan ,&nbsp;Fahad Ahmed ,&nbsp;Sheikh Hasib Cheragee ,&nbsp;Muntasir Hasan Kanchan ,&nbsp;Md Alimul Haque","doi":"10.1016/j.csa.2024.100076","DOIUrl":null,"url":null,"abstract":"<div><div>Ransomware remains a pervasive threat to Android devices, with its ability to encrypt critical data and demand ransoms causing significant disruptions to users and organizations alike. This research proposes a novel ensemble-based machine learning approach for the detection of Android ransomware, leveraging the strengths of multiple classifiers to enhance detection accuracy and robustness. Utilizing a comprehensive dataset comprising 203,556 network traffic records across 10 distinct ransomware types and benign traffic, we meticulously preprocess and feature-engineer the data to ensure optimal model performance. The methodology integrates various ensemble classifiers, evaluating each through rigorous cross-validation. Feature importance analysis using Random Forest identifies key indicators of ransomware activity, enabling us to refine our models and focus on the most predictive features. The results demonstrate that the ensemble models, particularly Bagging, achieve near-perfect detection rates, with precision, recall, and F1 scores consistently exceeding 99% for different binary attacks and multi-class classification. Finally, in-depth statistical analysis further validates the superiority of our approach, showcasing significant improvements over traditional machine learning methods. This research sets a new benchmark for Android ransomware detection, offering a robust, scalable, and highly accurate solution that enhances the security and resilience of mobile networks against evolving cyber threats.</div></div>","PeriodicalId":100351,"journal":{"name":"Cyber Security and Applications","volume":"3 ","pages":"Article 100076"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards superior android ransomware detection: An ensemble machine learning perspective\",\"authors\":\"Md. Alamgir Hossain ,&nbsp;Tahmid Hasan ,&nbsp;Fahad Ahmed ,&nbsp;Sheikh Hasib Cheragee ,&nbsp;Muntasir Hasan Kanchan ,&nbsp;Md Alimul Haque\",\"doi\":\"10.1016/j.csa.2024.100076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ransomware remains a pervasive threat to Android devices, with its ability to encrypt critical data and demand ransoms causing significant disruptions to users and organizations alike. This research proposes a novel ensemble-based machine learning approach for the detection of Android ransomware, leveraging the strengths of multiple classifiers to enhance detection accuracy and robustness. Utilizing a comprehensive dataset comprising 203,556 network traffic records across 10 distinct ransomware types and benign traffic, we meticulously preprocess and feature-engineer the data to ensure optimal model performance. The methodology integrates various ensemble classifiers, evaluating each through rigorous cross-validation. Feature importance analysis using Random Forest identifies key indicators of ransomware activity, enabling us to refine our models and focus on the most predictive features. The results demonstrate that the ensemble models, particularly Bagging, achieve near-perfect detection rates, with precision, recall, and F1 scores consistently exceeding 99% for different binary attacks and multi-class classification. Finally, in-depth statistical analysis further validates the superiority of our approach, showcasing significant improvements over traditional machine learning methods. This research sets a new benchmark for Android ransomware detection, offering a robust, scalable, and highly accurate solution that enhances the security and resilience of mobile networks against evolving cyber threats.</div></div>\",\"PeriodicalId\":100351,\"journal\":{\"name\":\"Cyber Security and Applications\",\"volume\":\"3 \",\"pages\":\"Article 100076\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cyber Security and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772918424000420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cyber Security and Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772918424000420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

勒索软件仍然是对安卓设备的一种普遍威胁,它能够加密关键数据并索要赎金,给用户和组织造成严重破坏。本研究提出了一种新颖的基于集合的机器学习方法来检测安卓勒索软件,利用多个分类器的优势来提高检测的准确性和鲁棒性。我们利用由 203,556 条网络流量记录组成的综合数据集,涵盖 10 种不同的勒索软件类型和良性流量,对数据进行了细致的预处理和特征工程,以确保最佳的模型性能。该方法整合了各种集合分类器,通过严格的交叉验证对每个分类器进行评估。使用随机森林进行的特征重要性分析确定了勒索软件活动的关键指标,使我们能够完善模型并将重点放在最具预测性的特征上。结果表明,对于不同的二元攻击和多类分类,集合模型(尤其是 Bagging)实现了近乎完美的检测率,精确度、召回率和 F1 分数始终超过 99%。最后,深入的统计分析进一步验证了我们方法的优越性,展示了与传统机器学习方法相比的显著改进。这项研究为安卓勒索软件检测树立了一个新的标杆,提供了一个稳健、可扩展和高度准确的解决方案,增强了移动网络的安全性和复原力,使其能够抵御不断发展的网络威胁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards superior android ransomware detection: An ensemble machine learning perspective
Ransomware remains a pervasive threat to Android devices, with its ability to encrypt critical data and demand ransoms causing significant disruptions to users and organizations alike. This research proposes a novel ensemble-based machine learning approach for the detection of Android ransomware, leveraging the strengths of multiple classifiers to enhance detection accuracy and robustness. Utilizing a comprehensive dataset comprising 203,556 network traffic records across 10 distinct ransomware types and benign traffic, we meticulously preprocess and feature-engineer the data to ensure optimal model performance. The methodology integrates various ensemble classifiers, evaluating each through rigorous cross-validation. Feature importance analysis using Random Forest identifies key indicators of ransomware activity, enabling us to refine our models and focus on the most predictive features. The results demonstrate that the ensemble models, particularly Bagging, achieve near-perfect detection rates, with precision, recall, and F1 scores consistently exceeding 99% for different binary attacks and multi-class classification. Finally, in-depth statistical analysis further validates the superiority of our approach, showcasing significant improvements over traditional machine learning methods. This research sets a new benchmark for Android ransomware detection, offering a robust, scalable, and highly accurate solution that enhances the security and resilience of mobile networks against evolving cyber threats.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信