新颖的全球视角:描述双摆的分形吸引盆地和混沌水平

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Bo Qin , Ying Zhang
{"title":"新颖的全球视角:描述双摆的分形吸引盆地和混沌水平","authors":"Bo Qin ,&nbsp;Ying Zhang","doi":"10.1016/j.chaos.2024.115694","DOIUrl":null,"url":null,"abstract":"<div><div>The objective of this work is to deeply investigate the sensitivity to initial conditions and the factors influencing the level of chaos in a double pendulum system from a novel global perspective. Firstly, the pendulum's motion trajectories and mechanical energy are compared to determine the appropriate numerical algorithms for solving this model, including the fourth-order Runge-Kutta method (RK4 method) and the Euler method. Secondly, the captured experimental motion trajectories, along with numerical results, vividly demonstrate the system's sensitivity to initial conditions. On this basis, we develop an algorithm that successfully delineates the basins of attraction associated with the number of flips and the final angular positions of the pendulum, uncovering a petal-like structure characterized by significant rotational symmetry and fractal features. Finally, we employ a heat map of the average maximum Lyapunov exponent to reveal the correlation between mass ratio and the level of chaos. Both qualitative and quantitative results consistently confirm the mechanisms underlying the system's sensitivity to initial conditions and the reliability of the developed algorithm. This research provides valuable insights into the global dynamics and engineering applications of the double pendulum system.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel global perspective: Characterizing the fractal basins of attraction and the level of chaos in a double pendulum\",\"authors\":\"Bo Qin ,&nbsp;Ying Zhang\",\"doi\":\"10.1016/j.chaos.2024.115694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The objective of this work is to deeply investigate the sensitivity to initial conditions and the factors influencing the level of chaos in a double pendulum system from a novel global perspective. Firstly, the pendulum's motion trajectories and mechanical energy are compared to determine the appropriate numerical algorithms for solving this model, including the fourth-order Runge-Kutta method (RK4 method) and the Euler method. Secondly, the captured experimental motion trajectories, along with numerical results, vividly demonstrate the system's sensitivity to initial conditions. On this basis, we develop an algorithm that successfully delineates the basins of attraction associated with the number of flips and the final angular positions of the pendulum, uncovering a petal-like structure characterized by significant rotational symmetry and fractal features. Finally, we employ a heat map of the average maximum Lyapunov exponent to reveal the correlation between mass ratio and the level of chaos. Both qualitative and quantitative results consistently confirm the mechanisms underlying the system's sensitivity to initial conditions and the reliability of the developed algorithm. This research provides valuable insights into the global dynamics and engineering applications of the double pendulum system.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077924012463\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924012463","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在从新颖的全局视角深入研究双摆系统对初始条件的敏感性以及影响混沌程度的因素。首先,通过比较双摆的运动轨迹和机械能,确定求解该模型的合适数值算法,包括四阶 Runge-Kutta 法(RK4 法)和欧拉法。其次,捕捉到的实验运动轨迹和数值结果生动地证明了系统对初始条件的敏感性。在此基础上,我们开发了一种算法,成功划定了与摆锤翻转次数和最终角度位置相关的吸引力盆地,揭示了具有显著旋转对称性和分形特征的花瓣状结构。最后,我们利用平均最大李亚普诺夫指数热图来揭示质量比与混沌程度之间的相关性。定性和定量结果一致证实了系统对初始条件敏感的内在机制以及所开发算法的可靠性。这项研究为双摆系统的全局动力学和工程应用提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel global perspective: Characterizing the fractal basins of attraction and the level of chaos in a double pendulum
The objective of this work is to deeply investigate the sensitivity to initial conditions and the factors influencing the level of chaos in a double pendulum system from a novel global perspective. Firstly, the pendulum's motion trajectories and mechanical energy are compared to determine the appropriate numerical algorithms for solving this model, including the fourth-order Runge-Kutta method (RK4 method) and the Euler method. Secondly, the captured experimental motion trajectories, along with numerical results, vividly demonstrate the system's sensitivity to initial conditions. On this basis, we develop an algorithm that successfully delineates the basins of attraction associated with the number of flips and the final angular positions of the pendulum, uncovering a petal-like structure characterized by significant rotational symmetry and fractal features. Finally, we employ a heat map of the average maximum Lyapunov exponent to reveal the correlation between mass ratio and the level of chaos. Both qualitative and quantitative results consistently confirm the mechanisms underlying the system's sensitivity to initial conditions and the reliability of the developed algorithm. This research provides valuable insights into the global dynamics and engineering applications of the double pendulum system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信