{"title":"结合对比学习和特征差异自动生成医疗报告","authors":"","doi":"10.1016/j.knosys.2024.112630","DOIUrl":null,"url":null,"abstract":"<div><div>The automatic medical report generation is a challenging task because it requires accurate capture and description of abnormal regions, especially for those discrepancies between patient and normal. In most cases, normal region descriptions dominate the entire medical report, and existing methods may fail to focus on abnormal regions due to data bias. Medical reports can be automatically generated by combining contrastive learning with feature difference in order to capture and describe abnormal regions effectively. By capturing discrepancy attributes between the input image and normal images, this method can provide more accurate diagnostic reports and better represent the visual features of abnormal regions. Specifically, we propose the feature difference approach to make the model focus more on abnormal regions, and on the other hand, we propose the combination of contrastive learning for enhancing the visual representation of feature difference based on the feature difference approach, thus improving the performance of the model. Experimental results on the IU-Xray and MIMIC-CXR datasets demonstrate the effectiveness of our approach.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic medical report generation combining contrastive learning and feature difference\",\"authors\":\"\",\"doi\":\"10.1016/j.knosys.2024.112630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The automatic medical report generation is a challenging task because it requires accurate capture and description of abnormal regions, especially for those discrepancies between patient and normal. In most cases, normal region descriptions dominate the entire medical report, and existing methods may fail to focus on abnormal regions due to data bias. Medical reports can be automatically generated by combining contrastive learning with feature difference in order to capture and describe abnormal regions effectively. By capturing discrepancy attributes between the input image and normal images, this method can provide more accurate diagnostic reports and better represent the visual features of abnormal regions. Specifically, we propose the feature difference approach to make the model focus more on abnormal regions, and on the other hand, we propose the combination of contrastive learning for enhancing the visual representation of feature difference based on the feature difference approach, thus improving the performance of the model. Experimental results on the IU-Xray and MIMIC-CXR datasets demonstrate the effectiveness of our approach.</div></div>\",\"PeriodicalId\":49939,\"journal\":{\"name\":\"Knowledge-Based Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge-Based Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950705124012644\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124012644","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Automatic medical report generation combining contrastive learning and feature difference
The automatic medical report generation is a challenging task because it requires accurate capture and description of abnormal regions, especially for those discrepancies between patient and normal. In most cases, normal region descriptions dominate the entire medical report, and existing methods may fail to focus on abnormal regions due to data bias. Medical reports can be automatically generated by combining contrastive learning with feature difference in order to capture and describe abnormal regions effectively. By capturing discrepancy attributes between the input image and normal images, this method can provide more accurate diagnostic reports and better represent the visual features of abnormal regions. Specifically, we propose the feature difference approach to make the model focus more on abnormal regions, and on the other hand, we propose the combination of contrastive learning for enhancing the visual representation of feature difference based on the feature difference approach, thus improving the performance of the model. Experimental results on the IU-Xray and MIMIC-CXR datasets demonstrate the effectiveness of our approach.
期刊介绍:
Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.