Anar Westerberg , Sai Ram Boggavarapu , Sandra Eriksson
{"title":"有限元法软件中的非线性永磁体各向异性模型","authors":"Anar Westerberg , Sai Ram Boggavarapu , Sandra Eriksson","doi":"10.1016/j.jmmm.2024.172597","DOIUrl":null,"url":null,"abstract":"<div><div>Rare earth elements are associated with many challenges, and therefore, rare earth free options are being investigated as an alternative. The further improvement of the electrical machines with rare earth free permanent magnets requires an accurate and efficient finite element method (FEM) model to predict and overcome the issues related to a low magnetic flux density or partial demagnetization of permanent magnets. The main challenges of the permanent magnet model development are related to the nonlinearity of the hysteresis loop in the operating region and permanent magnet anisotropy. The model presented in this paper is a dynamic model of anisotropic nonlinear permanent magnet (PM) developed in COMSOL Multiphysics 6.2 software. The model can be used for modelling magnetic materials with a hysteresis loop. Measurement results of Alnico 8 LNGT40 nonlinear permanent magnet were used in this model. The model includes all four quadrants of hysteresis loops, recoil lines, and knee points of preferred or easy (EA) and transverse or hard (HA) magnetization directions. It allows correct modelling of not only generators but also motors and memory machines. The flowcharts of the permanent magnet modelling logic were presented for both directions. Partial demagnetization in the preferred (EA) direction and partial magnetization in the transverse (HA) direction can be observed in the simulation results after the short circuit. Partial remagnetization of the magnet in the preferred (EA) direction and partial demagnetization in the transverse (HA) can be observed after applying a current with the same amplitude but in the opposite direction. The top part of the magnet was mostly affected by the magnetic field of the stator. Simulation results differ from the previous version of the magnet model. The new version of the model has a higher accuracy and shows higher demagnetization in the preferred (EA) direction than the previous version.</div></div>","PeriodicalId":366,"journal":{"name":"Journal of Magnetism and Magnetic Materials","volume":"611 ","pages":"Article 172597"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anisotropic model of nonlinear permanent magnets in finite element method software\",\"authors\":\"Anar Westerberg , Sai Ram Boggavarapu , Sandra Eriksson\",\"doi\":\"10.1016/j.jmmm.2024.172597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Rare earth elements are associated with many challenges, and therefore, rare earth free options are being investigated as an alternative. The further improvement of the electrical machines with rare earth free permanent magnets requires an accurate and efficient finite element method (FEM) model to predict and overcome the issues related to a low magnetic flux density or partial demagnetization of permanent magnets. The main challenges of the permanent magnet model development are related to the nonlinearity of the hysteresis loop in the operating region and permanent magnet anisotropy. The model presented in this paper is a dynamic model of anisotropic nonlinear permanent magnet (PM) developed in COMSOL Multiphysics 6.2 software. The model can be used for modelling magnetic materials with a hysteresis loop. Measurement results of Alnico 8 LNGT40 nonlinear permanent magnet were used in this model. The model includes all four quadrants of hysteresis loops, recoil lines, and knee points of preferred or easy (EA) and transverse or hard (HA) magnetization directions. It allows correct modelling of not only generators but also motors and memory machines. The flowcharts of the permanent magnet modelling logic were presented for both directions. Partial demagnetization in the preferred (EA) direction and partial magnetization in the transverse (HA) direction can be observed in the simulation results after the short circuit. Partial remagnetization of the magnet in the preferred (EA) direction and partial demagnetization in the transverse (HA) can be observed after applying a current with the same amplitude but in the opposite direction. The top part of the magnet was mostly affected by the magnetic field of the stator. Simulation results differ from the previous version of the magnet model. The new version of the model has a higher accuracy and shows higher demagnetization in the preferred (EA) direction than the previous version.</div></div>\",\"PeriodicalId\":366,\"journal\":{\"name\":\"Journal of Magnetism and Magnetic Materials\",\"volume\":\"611 \",\"pages\":\"Article 172597\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnetism and Magnetic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304885324008886\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetism and Magnetic Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304885324008886","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Anisotropic model of nonlinear permanent magnets in finite element method software
Rare earth elements are associated with many challenges, and therefore, rare earth free options are being investigated as an alternative. The further improvement of the electrical machines with rare earth free permanent magnets requires an accurate and efficient finite element method (FEM) model to predict and overcome the issues related to a low magnetic flux density or partial demagnetization of permanent magnets. The main challenges of the permanent magnet model development are related to the nonlinearity of the hysteresis loop in the operating region and permanent magnet anisotropy. The model presented in this paper is a dynamic model of anisotropic nonlinear permanent magnet (PM) developed in COMSOL Multiphysics 6.2 software. The model can be used for modelling magnetic materials with a hysteresis loop. Measurement results of Alnico 8 LNGT40 nonlinear permanent magnet were used in this model. The model includes all four quadrants of hysteresis loops, recoil lines, and knee points of preferred or easy (EA) and transverse or hard (HA) magnetization directions. It allows correct modelling of not only generators but also motors and memory machines. The flowcharts of the permanent magnet modelling logic were presented for both directions. Partial demagnetization in the preferred (EA) direction and partial magnetization in the transverse (HA) direction can be observed in the simulation results after the short circuit. Partial remagnetization of the magnet in the preferred (EA) direction and partial demagnetization in the transverse (HA) can be observed after applying a current with the same amplitude but in the opposite direction. The top part of the magnet was mostly affected by the magnetic field of the stator. Simulation results differ from the previous version of the magnet model. The new version of the model has a higher accuracy and shows higher demagnetization in the preferred (EA) direction than the previous version.
期刊介绍:
The Journal of Magnetism and Magnetic Materials provides an important forum for the disclosure and discussion of original contributions covering the whole spectrum of topics, from basic magnetism to the technology and applications of magnetic materials. The journal encourages greater interaction between the basic and applied sub-disciplines of magnetism with comprehensive review articles, in addition to full-length contributions. In addition, other categories of contributions are welcome, including Critical Focused issues, Current Perspectives and Outreach to the General Public.
Main Categories:
Full-length articles:
Technically original research documents that report results of value to the communities that comprise the journal audience. The link between chemical, structural and microstructural properties on the one hand and magnetic properties on the other hand are encouraged.
In addition to general topics covering all areas of magnetism and magnetic materials, the full-length articles also include three sub-sections, focusing on Nanomagnetism, Spintronics and Applications.
The sub-section on Nanomagnetism contains articles on magnetic nanoparticles, nanowires, thin films, 2D materials and other nanoscale magnetic materials and their applications.
The sub-section on Spintronics contains articles on magnetoresistance, magnetoimpedance, magneto-optical phenomena, Micro-Electro-Mechanical Systems (MEMS), and other topics related to spin current control and magneto-transport phenomena. The sub-section on Applications display papers that focus on applications of magnetic materials. The applications need to show a connection to magnetism.
Review articles:
Review articles organize, clarify, and summarize existing major works in the areas covered by the Journal and provide comprehensive citations to the full spectrum of relevant literature.