有两个以上动作的图形上的时尚游戏

IF 0.9 4区 数学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Qi Wang, Wensong Lin
{"title":"有两个以上动作的图形上的时尚游戏","authors":"Qi Wang, Wensong Lin","doi":"10.1007/s10878-024-01225-8","DOIUrl":null,"url":null,"abstract":"<p>We study the fashion game, a classical network coordination/anti-coordination game employed to model social dynamics in decision-making processes, especially in fashion choices. In this game, individuals, represented as vertices in a graph, make decisions based on their neighbors’ choices. Some individuals are positively influenced by their neighbors while others are negatively affected. Analyzing the game’s outcome aids in understanding fashion trends and flux within the population. In an instance of the fashion game, an action profile is formed when all individuals have made their choices. The utility of an individual under an action profile is defined according to the choices he and his neighbors made. A pure Nash equilibria is an action profile under which each individual has a nonnegative utility. To further study the existence of pure Nash equilibria, we investigate an associated optimization problem aimed at maximizing the minimal individual utility, referred to as the utility of a fashion game instance. The fashion game with two different but symmetric actions (choices) has been studied extensively in the literature. This paper seeks to extend the fashion game analysis to scenarios with more than two available actions, thereby enhancing comprehension of social dynamics in decision-making processes. We determine the utilities of all instances on paths, cycles and complete graphs. For instances where each individual likes to anti-coordinate, graph is planar and three actions are available, we illustrate the time complexity of determining the utility of such instances. Additionally, for instances containing both coordinating and anti-coordinating individuals, we extend the results on the time complexity of determining the utility of instances with two available actions to cases with more than two actions.\n</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"3 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fashion game on graphs with more than two actions\",\"authors\":\"Qi Wang, Wensong Lin\",\"doi\":\"10.1007/s10878-024-01225-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the fashion game, a classical network coordination/anti-coordination game employed to model social dynamics in decision-making processes, especially in fashion choices. In this game, individuals, represented as vertices in a graph, make decisions based on their neighbors’ choices. Some individuals are positively influenced by their neighbors while others are negatively affected. Analyzing the game’s outcome aids in understanding fashion trends and flux within the population. In an instance of the fashion game, an action profile is formed when all individuals have made their choices. The utility of an individual under an action profile is defined according to the choices he and his neighbors made. A pure Nash equilibria is an action profile under which each individual has a nonnegative utility. To further study the existence of pure Nash equilibria, we investigate an associated optimization problem aimed at maximizing the minimal individual utility, referred to as the utility of a fashion game instance. The fashion game with two different but symmetric actions (choices) has been studied extensively in the literature. This paper seeks to extend the fashion game analysis to scenarios with more than two available actions, thereby enhancing comprehension of social dynamics in decision-making processes. We determine the utilities of all instances on paths, cycles and complete graphs. For instances where each individual likes to anti-coordinate, graph is planar and three actions are available, we illustrate the time complexity of determining the utility of such instances. Additionally, for instances containing both coordinating and anti-coordinating individuals, we extend the results on the time complexity of determining the utility of instances with two available actions to cases with more than two actions.\\n</p>\",\"PeriodicalId\":50231,\"journal\":{\"name\":\"Journal of Combinatorial Optimization\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10878-024-01225-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-024-01225-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究的是时尚博弈,这是一种经典的网络协调/反协调博弈,用于模拟决策过程中的社会动态,尤其是在时尚选择方面。在这个博弈中,以图中顶点为代表的个体根据邻居的选择做出决策。一些人受到邻居的积极影响,而另一些人则受到消极影响。分析游戏的结果有助于了解时尚趋势和人群中的变化。在时尚博弈的一个实例中,当所有个体都做出选择后,就会形成一个行动轮廓。一个人在行动轮廓下的效用是根据他和他的邻居所做的选择来定义的。纯纳什均衡是指每个人的效用都为非负的行动轮廓。为了进一步研究纯纳什均衡的存在性,我们研究了一个相关的优化问题,旨在最大化最小的个人效用,即时尚博弈实例的效用。文献中对具有两种不同但对称的行动(选择)的时尚博弈进行了广泛的研究。本文试图将时尚博弈分析扩展到具有两个以上可用行动的情景,从而加深对决策过程中社会动态的理解。我们确定了路径、循环和完整图上所有实例的效用。对于每个人都喜欢反协调、图形为平面且有三个行动可用的实例,我们说明了确定此类实例效用的时间复杂性。此外,对于同时包含协调和反协调个体的实例,我们将确定具有两个可用行动的实例的效用的时间复杂性的结果扩展到具有两个以上行动的实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fashion game on graphs with more than two actions

Fashion game on graphs with more than two actions

We study the fashion game, a classical network coordination/anti-coordination game employed to model social dynamics in decision-making processes, especially in fashion choices. In this game, individuals, represented as vertices in a graph, make decisions based on their neighbors’ choices. Some individuals are positively influenced by their neighbors while others are negatively affected. Analyzing the game’s outcome aids in understanding fashion trends and flux within the population. In an instance of the fashion game, an action profile is formed when all individuals have made their choices. The utility of an individual under an action profile is defined according to the choices he and his neighbors made. A pure Nash equilibria is an action profile under which each individual has a nonnegative utility. To further study the existence of pure Nash equilibria, we investigate an associated optimization problem aimed at maximizing the minimal individual utility, referred to as the utility of a fashion game instance. The fashion game with two different but symmetric actions (choices) has been studied extensively in the literature. This paper seeks to extend the fashion game analysis to scenarios with more than two available actions, thereby enhancing comprehension of social dynamics in decision-making processes. We determine the utilities of all instances on paths, cycles and complete graphs. For instances where each individual likes to anti-coordinate, graph is planar and three actions are available, we illustrate the time complexity of determining the utility of such instances. Additionally, for instances containing both coordinating and anti-coordinating individuals, we extend the results on the time complexity of determining the utility of instances with two available actions to cases with more than two actions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Combinatorial Optimization
Journal of Combinatorial Optimization 数学-计算机:跨学科应用
CiteScore
2.00
自引率
10.00%
发文量
83
审稿时长
6 months
期刊介绍: The objective of Journal of Combinatorial Optimization is to advance and promote the theory and applications of combinatorial optimization, which is an area of research at the intersection of applied mathematics, computer science, and operations research and which overlaps with many other areas such as computation complexity, computational biology, VLSI design, communication networks, and management science. It includes complexity analysis and algorithm design for combinatorial optimization problems, numerical experiments and problem discovery with applications in science and engineering. The Journal of Combinatorial Optimization publishes refereed papers dealing with all theoretical, computational and applied aspects of combinatorial optimization. It also publishes reviews of appropriate books and special issues of journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信