Pascal Mossier , Steven Jöns , Simone Chiocchetti , Andrea D. Beck , Claus-Dieter Munz
{"title":"利用双曲线戈杜诺夫-佩什科夫-罗缅斯基模型对相变进行数值模拟","authors":"Pascal Mossier , Steven Jöns , Simone Chiocchetti , Andrea D. Beck , Claus-Dieter Munz","doi":"10.1016/j.jcp.2024.113514","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a thermodynamically consistent numerical solution of the interfacial Riemann problem for the first-order hyperbolic continuum model of Godunov, Peshkov and Romenski (GPR model) is presented. In the presence of phase transition, interfacial physics are governed by molecular interaction on a microscopic scale, beyond the scope of the macroscopic continuum model in the bulk phases. The developed approximate two-phase Riemann solvers tackle this multi-scale problem, by incorporating a local thermodynamic model to predict the interfacial entropy production. Using phenomenological relations of non-equilibrium thermodynamics, interfacial mass and heat fluxes are derived from the entropy production and provide closure at the phase boundary. We employ the proposed Riemann solvers in an efficient sharp interface level-set Ghost-Fluid framework to provide coupling conditions at phase interfaces under phase transition. As a single-phase benchmark, a Rayleigh-Bénard convection is studied to compare the hyperbolic thermal relaxation formulation of the GPR model against the hyperbolic-parabolic Euler-Fourier system. The novel interfacial Riemann solvers are validated against molecular dynamics simulations of evaporating shock tubes with the Lennard-Jones shifted and truncated potential. On a macroscopic scale, evaporating shock tubes are computed for the material n-Dodecane and compared against Euler-Fourier results. Finally, the efficiency and robustness of the scheme is demonstrated with shock-droplet interaction simulations that involve both phase transfer and surface tension, while featuring severe interface deformations.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"520 ","pages":"Article 113514"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical simulation of phase transition with the hyperbolic Godunov-Peshkov-Romenski model\",\"authors\":\"Pascal Mossier , Steven Jöns , Simone Chiocchetti , Andrea D. Beck , Claus-Dieter Munz\",\"doi\":\"10.1016/j.jcp.2024.113514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, a thermodynamically consistent numerical solution of the interfacial Riemann problem for the first-order hyperbolic continuum model of Godunov, Peshkov and Romenski (GPR model) is presented. In the presence of phase transition, interfacial physics are governed by molecular interaction on a microscopic scale, beyond the scope of the macroscopic continuum model in the bulk phases. The developed approximate two-phase Riemann solvers tackle this multi-scale problem, by incorporating a local thermodynamic model to predict the interfacial entropy production. Using phenomenological relations of non-equilibrium thermodynamics, interfacial mass and heat fluxes are derived from the entropy production and provide closure at the phase boundary. We employ the proposed Riemann solvers in an efficient sharp interface level-set Ghost-Fluid framework to provide coupling conditions at phase interfaces under phase transition. As a single-phase benchmark, a Rayleigh-Bénard convection is studied to compare the hyperbolic thermal relaxation formulation of the GPR model against the hyperbolic-parabolic Euler-Fourier system. The novel interfacial Riemann solvers are validated against molecular dynamics simulations of evaporating shock tubes with the Lennard-Jones shifted and truncated potential. On a macroscopic scale, evaporating shock tubes are computed for the material n-Dodecane and compared against Euler-Fourier results. Finally, the efficiency and robustness of the scheme is demonstrated with shock-droplet interaction simulations that involve both phase transfer and surface tension, while featuring severe interface deformations.</div></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":\"520 \",\"pages\":\"Article 113514\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021999124007629\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999124007629","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Numerical simulation of phase transition with the hyperbolic Godunov-Peshkov-Romenski model
In this paper, a thermodynamically consistent numerical solution of the interfacial Riemann problem for the first-order hyperbolic continuum model of Godunov, Peshkov and Romenski (GPR model) is presented. In the presence of phase transition, interfacial physics are governed by molecular interaction on a microscopic scale, beyond the scope of the macroscopic continuum model in the bulk phases. The developed approximate two-phase Riemann solvers tackle this multi-scale problem, by incorporating a local thermodynamic model to predict the interfacial entropy production. Using phenomenological relations of non-equilibrium thermodynamics, interfacial mass and heat fluxes are derived from the entropy production and provide closure at the phase boundary. We employ the proposed Riemann solvers in an efficient sharp interface level-set Ghost-Fluid framework to provide coupling conditions at phase interfaces under phase transition. As a single-phase benchmark, a Rayleigh-Bénard convection is studied to compare the hyperbolic thermal relaxation formulation of the GPR model against the hyperbolic-parabolic Euler-Fourier system. The novel interfacial Riemann solvers are validated against molecular dynamics simulations of evaporating shock tubes with the Lennard-Jones shifted and truncated potential. On a macroscopic scale, evaporating shock tubes are computed for the material n-Dodecane and compared against Euler-Fourier results. Finally, the efficiency and robustness of the scheme is demonstrated with shock-droplet interaction simulations that involve both phase transfer and surface tension, while featuring severe interface deformations.
期刊介绍:
Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries.
The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.