{"title":"CuLaO2 中的电子结构、声子和天生有效电荷:第一原理研究","authors":"Mohamed Khedidji , Houssyen Yousfi , Faouzi Saib , Mohamed Trari","doi":"10.1016/j.ssc.2024.115733","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a first-principles investigation of the structural, electronic, dielectric, and dynamical properties of CuLaO<sub>2</sub> in its rhombohedral delafossite phase using density functional theory. Our analysis reveals that CuLaO<sub>2</sub> is a stable indirect band gap semiconductor with a 2.35 eV band gap, showing significant Cu (3d, 4s) and O (2p) orbital hybridization. Phonon dispersion calculations confirm dynamical stability with no imaginary frequencies, and the material exhibits anisotropic dielectric behavior due to mixed ionic-covalent bonding. These findings suggest that CuLaO<sub>2</sub> has potential applications in optoelectronics and energy technologies, providing a theoretical basis for future experimental validation.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"394 ","pages":"Article 115733"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electronic structure, phonons, and born effective charges in CuLaO2: A first-principles study\",\"authors\":\"Mohamed Khedidji , Houssyen Yousfi , Faouzi Saib , Mohamed Trari\",\"doi\":\"10.1016/j.ssc.2024.115733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a first-principles investigation of the structural, electronic, dielectric, and dynamical properties of CuLaO<sub>2</sub> in its rhombohedral delafossite phase using density functional theory. Our analysis reveals that CuLaO<sub>2</sub> is a stable indirect band gap semiconductor with a 2.35 eV band gap, showing significant Cu (3d, 4s) and O (2p) orbital hybridization. Phonon dispersion calculations confirm dynamical stability with no imaginary frequencies, and the material exhibits anisotropic dielectric behavior due to mixed ionic-covalent bonding. These findings suggest that CuLaO<sub>2</sub> has potential applications in optoelectronics and energy technologies, providing a theoretical basis for future experimental validation.</div></div>\",\"PeriodicalId\":430,\"journal\":{\"name\":\"Solid State Communications\",\"volume\":\"394 \",\"pages\":\"Article 115733\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038109824003107\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038109824003107","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Electronic structure, phonons, and born effective charges in CuLaO2: A first-principles study
This study presents a first-principles investigation of the structural, electronic, dielectric, and dynamical properties of CuLaO2 in its rhombohedral delafossite phase using density functional theory. Our analysis reveals that CuLaO2 is a stable indirect band gap semiconductor with a 2.35 eV band gap, showing significant Cu (3d, 4s) and O (2p) orbital hybridization. Phonon dispersion calculations confirm dynamical stability with no imaginary frequencies, and the material exhibits anisotropic dielectric behavior due to mixed ionic-covalent bonding. These findings suggest that CuLaO2 has potential applications in optoelectronics and energy technologies, providing a theoretical basis for future experimental validation.
期刊介绍:
Solid State Communications is an international medium for the publication of short communications and original research articles on significant developments in condensed matter science, giving scientists immediate access to important, recently completed work. The journal publishes original experimental and theoretical research on the physical and chemical properties of solids and other condensed systems and also on their preparation. The submission of manuscripts reporting research on the basic physics of materials science and devices, as well as of state-of-the-art microstructures and nanostructures, is encouraged.
A coherent quantitative treatment emphasizing new physics is expected rather than a simple accumulation of experimental data. Consistent with these aims, the short communications should be kept concise and short, usually not longer than six printed pages. The number of figures and tables should also be kept to a minimum. Solid State Communications now also welcomes original research articles without length restrictions.
The Fast-Track section of Solid State Communications is the venue for very rapid publication of short communications on significant developments in condensed matter science. The goal is to offer the broad condensed matter community quick and immediate access to publish recently completed papers in research areas that are rapidly evolving and in which there are developments with great potential impact.