{"title":"开发用于分析平面称重传感器变形的分析模型和方法","authors":"","doi":"10.1016/j.mechmachtheory.2024.105812","DOIUrl":null,"url":null,"abstract":"<div><div>Due to their advantageous properties, compliant mechanisms are widely used in various technical fields. Strain-based deformation bodies, a particular type of these mechanisms, are often used in weighing technology. They are used in conjunction with strain gauges for force measurement, among other applications. Until now, such weighing mechanisms have been designed using finite element simulations or empirical studies, which are often time-consuming and costly. Therefore, this article presents an analytical calculation model based on the theory of large deformations of rod-like structures, which simplifies the calculation of such weighing mechanisms. Key elements in this calculation are the transversally symmetric hinges required for the description. Investigations show that, due to the geometry of these cells, tensile and compressive deformations are not negligible and must be included in the analytical model. The validity and accuracy of the analytical model are verified through parameter studies and show deviations of less than 6% compared to the FEM. Finally, the model is integrated into a graphical user interface to allow an easy application to analyze load cells.</div></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of an analytical model and method for analyzing deformation in planar load cells\",\"authors\":\"\",\"doi\":\"10.1016/j.mechmachtheory.2024.105812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Due to their advantageous properties, compliant mechanisms are widely used in various technical fields. Strain-based deformation bodies, a particular type of these mechanisms, are often used in weighing technology. They are used in conjunction with strain gauges for force measurement, among other applications. Until now, such weighing mechanisms have been designed using finite element simulations or empirical studies, which are often time-consuming and costly. Therefore, this article presents an analytical calculation model based on the theory of large deformations of rod-like structures, which simplifies the calculation of such weighing mechanisms. Key elements in this calculation are the transversally symmetric hinges required for the description. Investigations show that, due to the geometry of these cells, tensile and compressive deformations are not negligible and must be included in the analytical model. The validity and accuracy of the analytical model are verified through parameter studies and show deviations of less than 6% compared to the FEM. Finally, the model is integrated into a graphical user interface to allow an easy application to analyze load cells.</div></div>\",\"PeriodicalId\":49845,\"journal\":{\"name\":\"Mechanism and Machine Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanism and Machine Theory\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0094114X24002398\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X24002398","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Development of an analytical model and method for analyzing deformation in planar load cells
Due to their advantageous properties, compliant mechanisms are widely used in various technical fields. Strain-based deformation bodies, a particular type of these mechanisms, are often used in weighing technology. They are used in conjunction with strain gauges for force measurement, among other applications. Until now, such weighing mechanisms have been designed using finite element simulations or empirical studies, which are often time-consuming and costly. Therefore, this article presents an analytical calculation model based on the theory of large deformations of rod-like structures, which simplifies the calculation of such weighing mechanisms. Key elements in this calculation are the transversally symmetric hinges required for the description. Investigations show that, due to the geometry of these cells, tensile and compressive deformations are not negligible and must be included in the analytical model. The validity and accuracy of the analytical model are verified through parameter studies and show deviations of less than 6% compared to the FEM. Finally, the model is integrated into a graphical user interface to allow an easy application to analyze load cells.
期刊介绍:
Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal.
The main topics are:
Design Theory and Methodology;
Haptics and Human-Machine-Interfaces;
Robotics, Mechatronics and Micro-Machines;
Mechanisms, Mechanical Transmissions and Machines;
Kinematics, Dynamics, and Control of Mechanical Systems;
Applications to Bioengineering and Molecular Chemistry