{"title":"MHD 微波方程的衰减率下限","authors":"Felipe W. Cruz , Lorena B.S. Freitas","doi":"10.1016/j.chaos.2024.115619","DOIUrl":null,"url":null,"abstract":"<div><div>We derive lower bounds for the decay rates of solutions to the 3D equations describing the motion of a micropolar fluid under the influence of a magnetic field. To accomplish this, we establish a lower bound for the decay of the solution <span><math><mrow><mo>(</mo><mspace></mspace><mspace></mspace><mover><mrow><mi>u</mi></mrow><mo>¯</mo></mover><mo>,</mo><mover><mrow><mi>w</mi></mrow><mo>¯</mo></mover><mo>,</mo><mover><mrow><mi>b</mi></mrow><mo>¯</mo></mover><mspace></mspace><mspace></mspace><mo>)</mo></mrow></math></span> of the linearized system, as well as an upper bound for the difference <span><math><mrow><mo>(</mo><mspace></mspace><mspace></mspace><mi>u</mi><mo>−</mo><mover><mrow><mi>u</mi></mrow><mo>¯</mo></mover><mo>,</mo><mi>w</mi><mo>−</mo><mover><mrow><mi>w</mi></mrow><mo>¯</mo></mover><mo>,</mo><mi>b</mi><mo>−</mo><mover><mrow><mi>b</mi></mrow><mo>¯</mo></mover><mspace></mspace><mspace></mspace><mo>)</mo></mrow></math></span>, where <span><math><mrow><mo>(</mo><mspace></mspace><mspace></mspace><mi>u</mi><mo>,</mo><mi>w</mi><mo>,</mo><mi>b</mi><mspace></mspace><mspace></mspace><mo>)</mo></mrow></math></span> represents the solution of the full nonlinear system. More specifically, for a certain class of initial data, we prove that <span><math><mrow><mrow><mo>‖</mo></mrow><mspace></mspace><mspace></mspace><mi>u</mi><mrow><mo>(</mo><mi>⋅</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mspace></mspace><msubsup><mrow><mspace></mspace><mrow><mo>‖</mo></mrow></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msubsup><mspace></mspace><mspace></mspace><mo>+</mo><mspace></mspace><mrow><mo>‖</mo></mrow><mspace></mspace><mspace></mspace><mi>w</mi><mrow><mo>(</mo><mi>⋅</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mspace></mspace><msubsup><mrow><mspace></mspace><mrow><mo>‖</mo></mrow></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msubsup><mspace></mspace><mspace></mspace><mo>+</mo><mspace></mspace><mrow><mo>‖</mo></mrow><mspace></mspace><mspace></mspace><mi>b</mi><mrow><mo>(</mo><mi>⋅</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mspace></mspace><msubsup><mrow><mspace></mspace><mrow><mo>‖</mo></mrow></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msubsup><mspace></mspace><mspace></mspace><mo>≥</mo><mspace></mspace><mspace></mspace><mi>C</mi><mspace></mspace><mspace></mspace><msup><mrow><mrow><mo>(</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mo>−</mo><mspace></mspace><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></mrow></math></span>, for all <span><math><mrow><mi>t</mi><mo>≥</mo><mn>0</mn></mrow></math></span>.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lower bounds of decay rates for the MHD micropolar equations\",\"authors\":\"Felipe W. Cruz , Lorena B.S. Freitas\",\"doi\":\"10.1016/j.chaos.2024.115619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We derive lower bounds for the decay rates of solutions to the 3D equations describing the motion of a micropolar fluid under the influence of a magnetic field. To accomplish this, we establish a lower bound for the decay of the solution <span><math><mrow><mo>(</mo><mspace></mspace><mspace></mspace><mover><mrow><mi>u</mi></mrow><mo>¯</mo></mover><mo>,</mo><mover><mrow><mi>w</mi></mrow><mo>¯</mo></mover><mo>,</mo><mover><mrow><mi>b</mi></mrow><mo>¯</mo></mover><mspace></mspace><mspace></mspace><mo>)</mo></mrow></math></span> of the linearized system, as well as an upper bound for the difference <span><math><mrow><mo>(</mo><mspace></mspace><mspace></mspace><mi>u</mi><mo>−</mo><mover><mrow><mi>u</mi></mrow><mo>¯</mo></mover><mo>,</mo><mi>w</mi><mo>−</mo><mover><mrow><mi>w</mi></mrow><mo>¯</mo></mover><mo>,</mo><mi>b</mi><mo>−</mo><mover><mrow><mi>b</mi></mrow><mo>¯</mo></mover><mspace></mspace><mspace></mspace><mo>)</mo></mrow></math></span>, where <span><math><mrow><mo>(</mo><mspace></mspace><mspace></mspace><mi>u</mi><mo>,</mo><mi>w</mi><mo>,</mo><mi>b</mi><mspace></mspace><mspace></mspace><mo>)</mo></mrow></math></span> represents the solution of the full nonlinear system. More specifically, for a certain class of initial data, we prove that <span><math><mrow><mrow><mo>‖</mo></mrow><mspace></mspace><mspace></mspace><mi>u</mi><mrow><mo>(</mo><mi>⋅</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mspace></mspace><msubsup><mrow><mspace></mspace><mrow><mo>‖</mo></mrow></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msubsup><mspace></mspace><mspace></mspace><mo>+</mo><mspace></mspace><mrow><mo>‖</mo></mrow><mspace></mspace><mspace></mspace><mi>w</mi><mrow><mo>(</mo><mi>⋅</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mspace></mspace><msubsup><mrow><mspace></mspace><mrow><mo>‖</mo></mrow></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msubsup><mspace></mspace><mspace></mspace><mo>+</mo><mspace></mspace><mrow><mo>‖</mo></mrow><mspace></mspace><mspace></mspace><mi>b</mi><mrow><mo>(</mo><mi>⋅</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mspace></mspace><msubsup><mrow><mspace></mspace><mrow><mo>‖</mo></mrow></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msubsup><mspace></mspace><mspace></mspace><mo>≥</mo><mspace></mspace><mspace></mspace><mi>C</mi><mspace></mspace><mspace></mspace><msup><mrow><mrow><mo>(</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mo>−</mo><mspace></mspace><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></mrow></math></span>, for all <span><math><mrow><mi>t</mi><mo>≥</mo><mn>0</mn></mrow></math></span>.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077924011718\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924011718","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Lower bounds of decay rates for the MHD micropolar equations
We derive lower bounds for the decay rates of solutions to the 3D equations describing the motion of a micropolar fluid under the influence of a magnetic field. To accomplish this, we establish a lower bound for the decay of the solution of the linearized system, as well as an upper bound for the difference , where represents the solution of the full nonlinear system. More specifically, for a certain class of initial data, we prove that , for all .
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.