用于同步分数阶混沌系统的新型自适应预定义时间滑模控制方案

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Yunkang Sun, Yuquan Chen, Bing Wang, Cheng Ma
{"title":"用于同步分数阶混沌系统的新型自适应预定义时间滑模控制方案","authors":"Yunkang Sun,&nbsp;Yuquan Chen,&nbsp;Bing Wang,&nbsp;Cheng Ma","doi":"10.1016/j.chaos.2024.115610","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a novel adaptive predefined-time sliding model control scheme is presented for synchronizing fractional order chaotic systems subject to model uncertainties and external disturbances. A new sufficient criterion for predefined-time stability is proposed and proven to be valid by using the zero distribution property of sine functions. Based on the proposed criterion, a novel adaptive fractional order predefined-time sliding mode surface is designed and it is rigorously proven that the error states could converge to zero within a predefined time. Finally, a novel adaptive fractional order controller is proposed to ensure that the designed sliding mode surface can be reached within a predefined time. Numerous simulation results demonstrate that compared with the existing fixed-time control scheme, the proposed control scheme has the advantage of a simpler structure, fewer parameters and stronger robustness to the variation of initial values.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel adaptive predefined-time sliding mode control scheme for synchronizing fractional order chaotic systems\",\"authors\":\"Yunkang Sun,&nbsp;Yuquan Chen,&nbsp;Bing Wang,&nbsp;Cheng Ma\",\"doi\":\"10.1016/j.chaos.2024.115610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, a novel adaptive predefined-time sliding model control scheme is presented for synchronizing fractional order chaotic systems subject to model uncertainties and external disturbances. A new sufficient criterion for predefined-time stability is proposed and proven to be valid by using the zero distribution property of sine functions. Based on the proposed criterion, a novel adaptive fractional order predefined-time sliding mode surface is designed and it is rigorously proven that the error states could converge to zero within a predefined time. Finally, a novel adaptive fractional order controller is proposed to ensure that the designed sliding mode surface can be reached within a predefined time. Numerous simulation results demonstrate that compared with the existing fixed-time control scheme, the proposed control scheme has the advantage of a simpler structure, fewer parameters and stronger robustness to the variation of initial values.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077924011627\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924011627","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新型自适应预定义时间滑动模型控制方案,用于同步受模型不确定性和外部干扰影响的分数阶混沌系统。本文提出了一种新的预定义时间稳定性充分准则,并利用正弦函数的零分布特性证明了该准则的有效性。根据提出的准则,设计了一种新型自适应分数阶预定时间滑动模态面,并严格证明误差状态可在预定时间内收敛为零。最后,提出了一种新型自适应分数阶控制器,以确保在预定时间内达到所设计的滑模面。大量仿真结果表明,与现有的固定时间控制方案相比,所提出的控制方案具有结构简单、参数少、对初始值变化的鲁棒性强等优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel adaptive predefined-time sliding mode control scheme for synchronizing fractional order chaotic systems
In this paper, a novel adaptive predefined-time sliding model control scheme is presented for synchronizing fractional order chaotic systems subject to model uncertainties and external disturbances. A new sufficient criterion for predefined-time stability is proposed and proven to be valid by using the zero distribution property of sine functions. Based on the proposed criterion, a novel adaptive fractional order predefined-time sliding mode surface is designed and it is rigorously proven that the error states could converge to zero within a predefined time. Finally, a novel adaptive fractional order controller is proposed to ensure that the designed sliding mode surface can be reached within a predefined time. Numerous simulation results demonstrate that compared with the existing fixed-time control scheme, the proposed control scheme has the advantage of a simpler structure, fewer parameters and stronger robustness to the variation of initial values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信