通过缩放几何布朗运动估计随机 SIR 模型中的参数

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
J.A. Sánchez-Monroy , Javier Riascos-Ochoa , Abel Bustos
{"title":"通过缩放几何布朗运动估计随机 SIR 模型中的参数","authors":"J.A. Sánchez-Monroy ,&nbsp;Javier Riascos-Ochoa ,&nbsp;Abel Bustos","doi":"10.1016/j.chaos.2024.115626","DOIUrl":null,"url":null,"abstract":"<div><div>The stochastic SIR epidemiological model offers a comprehensive understanding of infectious diseases dynamics by taking into account the effect of random fluctuations. However, because of the nonlinear nature of the stochastic SIR model, accurately estimating its parameters presents a significant challenge, crucial for unraveling the intricacies of disease propagation and developing effective control strategies. In this study, we introduce a novel approach for the estimation of the parameters within the stochastic SIR model, including the often-neglected noise in the transmission rate (volatility). We employ a quasi-deterministic approximation, where the number of infected (susceptible) individuals evolves deterministically, whereas the number of susceptible (infected) individuals evolves stochastically. The solutions of the resulting stochastic equations are scaled geometric Brownian motions (SGBM). Based on the maximum likelihood method applied to the log-returns of susceptible (infected) individuals, we propose algorithms that yield numerical evidence of unbiased estimates of transmission and recovery rates. Our approach maintains robustness even in the presence of increasing volatility, ensuring reliable estimations within reasonable limits. In more realistic scenarios where the model parameters vary with time, we demonstrate the adaptability of our algorithms for successful parameter estimation in sliding time windows. Notably, this approach is not only accurate but also straightforward to implement and computationally efficient.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameter estimation in the stochastic SIR model via scaled geometric Brownian motion\",\"authors\":\"J.A. Sánchez-Monroy ,&nbsp;Javier Riascos-Ochoa ,&nbsp;Abel Bustos\",\"doi\":\"10.1016/j.chaos.2024.115626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The stochastic SIR epidemiological model offers a comprehensive understanding of infectious diseases dynamics by taking into account the effect of random fluctuations. However, because of the nonlinear nature of the stochastic SIR model, accurately estimating its parameters presents a significant challenge, crucial for unraveling the intricacies of disease propagation and developing effective control strategies. In this study, we introduce a novel approach for the estimation of the parameters within the stochastic SIR model, including the often-neglected noise in the transmission rate (volatility). We employ a quasi-deterministic approximation, where the number of infected (susceptible) individuals evolves deterministically, whereas the number of susceptible (infected) individuals evolves stochastically. The solutions of the resulting stochastic equations are scaled geometric Brownian motions (SGBM). Based on the maximum likelihood method applied to the log-returns of susceptible (infected) individuals, we propose algorithms that yield numerical evidence of unbiased estimates of transmission and recovery rates. Our approach maintains robustness even in the presence of increasing volatility, ensuring reliable estimations within reasonable limits. In more realistic scenarios where the model parameters vary with time, we demonstrate the adaptability of our algorithms for successful parameter estimation in sliding time windows. Notably, this approach is not only accurate but also straightforward to implement and computationally efficient.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077924011780\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924011780","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

随机 SIR 流行病学模型通过考虑随机波动的影响,提供了对传染病动态的全面理解。然而,由于随机 SIR 模型的非线性性质,准确估算其参数是一项重大挑战,这对于揭示疾病传播的复杂性和制定有效的控制策略至关重要。在本研究中,我们介绍了一种估算随机 SIR 模型参数的新方法,包括经常被忽视的传播率(波动性)噪声。我们采用了一种准确定性近似方法,即感染(易感)个体的数量是确定性变化的,而易感(感染)个体的数量是随机变化的。由此产生的随机方程的解是缩放几何布朗运动(SGBM)。基于应用于易感(感染)个体对数回归的最大似然法,我们提出了一些算法,这些算法能从数字上证明对传播率和恢复率的无偏估计。我们的方法即使在波动性增大的情况下也能保持稳健性,确保在合理范围内做出可靠的估计。在模型参数随时间变化的更现实场景中,我们证明了我们的算法在滑动时间窗中成功进行参数估计的适应性。值得注意的是,这种方法不仅准确,而且实施简单,计算效率高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameter estimation in the stochastic SIR model via scaled geometric Brownian motion
The stochastic SIR epidemiological model offers a comprehensive understanding of infectious diseases dynamics by taking into account the effect of random fluctuations. However, because of the nonlinear nature of the stochastic SIR model, accurately estimating its parameters presents a significant challenge, crucial for unraveling the intricacies of disease propagation and developing effective control strategies. In this study, we introduce a novel approach for the estimation of the parameters within the stochastic SIR model, including the often-neglected noise in the transmission rate (volatility). We employ a quasi-deterministic approximation, where the number of infected (susceptible) individuals evolves deterministically, whereas the number of susceptible (infected) individuals evolves stochastically. The solutions of the resulting stochastic equations are scaled geometric Brownian motions (SGBM). Based on the maximum likelihood method applied to the log-returns of susceptible (infected) individuals, we propose algorithms that yield numerical evidence of unbiased estimates of transmission and recovery rates. Our approach maintains robustness even in the presence of increasing volatility, ensuring reliable estimations within reasonable limits. In more realistic scenarios where the model parameters vary with time, we demonstrate the adaptability of our algorithms for successful parameter estimation in sliding time windows. Notably, this approach is not only accurate but also straightforward to implement and computationally efficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信