{"title":"具有自走方向逆转效应的集体运动","authors":"C. Wang , C.R. Li , W. Guo , L.C. Du","doi":"10.1016/j.chaos.2024.115621","DOIUrl":null,"url":null,"abstract":"<div><div>Some organisms in nature, including myxococcus xanthus and locusts, exhibit random reversals of direction for the purpose of obtaining more nutrients or avoiding obstacles. In this study, we have constructed a Vicsek-like model and investigated collective motion with the self-propelled directional reversals effect by adjusting the strength of noise and the average number density. Our study results show that: (1) The self-propelled directional reversals effect generally reduces the directional consistency of collective motion. (2) In the weak noise region, the self-propelled directional reversals effect enhances the global order parameter of the group with topological interaction pattern. (3) Directional reversals with different correlation time do not alter the power-law relation between the order parameter and the density, but the presence of memory effect can lead to different sign of power exponent near certain density thresholds. (4) Machine learning analysis reveals the clusters phenomenon is associated with high local and low global order parameters in system. Overall, our study provides an insight to the collective motion with the directional reversals effect.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Collective motion with the self-propelled directional reversals effect\",\"authors\":\"C. Wang , C.R. Li , W. Guo , L.C. Du\",\"doi\":\"10.1016/j.chaos.2024.115621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Some organisms in nature, including myxococcus xanthus and locusts, exhibit random reversals of direction for the purpose of obtaining more nutrients or avoiding obstacles. In this study, we have constructed a Vicsek-like model and investigated collective motion with the self-propelled directional reversals effect by adjusting the strength of noise and the average number density. Our study results show that: (1) The self-propelled directional reversals effect generally reduces the directional consistency of collective motion. (2) In the weak noise region, the self-propelled directional reversals effect enhances the global order parameter of the group with topological interaction pattern. (3) Directional reversals with different correlation time do not alter the power-law relation between the order parameter and the density, but the presence of memory effect can lead to different sign of power exponent near certain density thresholds. (4) Machine learning analysis reveals the clusters phenomenon is associated with high local and low global order parameters in system. Overall, our study provides an insight to the collective motion with the directional reversals effect.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077924011731\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924011731","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Collective motion with the self-propelled directional reversals effect
Some organisms in nature, including myxococcus xanthus and locusts, exhibit random reversals of direction for the purpose of obtaining more nutrients or avoiding obstacles. In this study, we have constructed a Vicsek-like model and investigated collective motion with the self-propelled directional reversals effect by adjusting the strength of noise and the average number density. Our study results show that: (1) The self-propelled directional reversals effect generally reduces the directional consistency of collective motion. (2) In the weak noise region, the self-propelled directional reversals effect enhances the global order parameter of the group with topological interaction pattern. (3) Directional reversals with different correlation time do not alter the power-law relation between the order parameter and the density, but the presence of memory effect can lead to different sign of power exponent near certain density thresholds. (4) Machine learning analysis reveals the clusters phenomenon is associated with high local and low global order parameters in system. Overall, our study provides an insight to the collective motion with the directional reversals effect.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.