研究非线性物理学中的(3+1)维 B 型 Kadomtsev-Petviashvili 方程:多重孤子解、块解和呼吸波解

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Abdul-Majid Wazwaz
{"title":"研究非线性物理学中的(3+1)维 B 型 Kadomtsev-Petviashvili 方程:多重孤子解、块解和呼吸波解","authors":"Abdul-Majid Wazwaz","doi":"10.1016/j.chaos.2024.115668","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we study an extended (3+1)-dimensional B-type Kadomtsev–Petviashvili (BKP) equations that appear in many nonlinear physics applications. We show that this extended equation retains its complete integrability via Painlevé analysis. We explore multiple soliton solutions by using the Hirota bilinear method. Moreover, we derive lump solutions where two numerical examples are tested. Breather wave solutions were also explored by using a variety of distinct schemes. We also determine other traveling wave solutions, rational solutions, periodic solutions, exponential solutions, ratio of trigonometric or hyperbolic functions, and others.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on a (3+1)-dimensional B-type Kadomtsev–Petviashvili equation in nonlinear physics: Multiple soliton solutions, lump solutions, and breather wave solutions\",\"authors\":\"Abdul-Majid Wazwaz\",\"doi\":\"10.1016/j.chaos.2024.115668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, we study an extended (3+1)-dimensional B-type Kadomtsev–Petviashvili (BKP) equations that appear in many nonlinear physics applications. We show that this extended equation retains its complete integrability via Painlevé analysis. We explore multiple soliton solutions by using the Hirota bilinear method. Moreover, we derive lump solutions where two numerical examples are tested. Breather wave solutions were also explored by using a variety of distinct schemes. We also determine other traveling wave solutions, rational solutions, periodic solutions, exponential solutions, ratio of trigonometric or hyperbolic functions, and others.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077924012207\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924012207","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们研究了在许多非线性物理应用中出现的扩展 (3+1)-dimensional B 型 Kadomtsev-Petviashvili (BKP) 方程。我们通过 Painlevé 分析表明,这个扩展方程保持了其完全的可整性。我们利用 Hirota 双线性方法探索了多重孤子解。此外,我们还推导出了块解,并对两个数值实例进行了测试。我们还使用各种不同的方案探索了呼吸波解决方案。我们还确定了其他行波解、有理解、周期解、指数解、三角函数或双曲函数的比值等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on a (3+1)-dimensional B-type Kadomtsev–Petviashvili equation in nonlinear physics: Multiple soliton solutions, lump solutions, and breather wave solutions
In this work, we study an extended (3+1)-dimensional B-type Kadomtsev–Petviashvili (BKP) equations that appear in many nonlinear physics applications. We show that this extended equation retains its complete integrability via Painlevé analysis. We explore multiple soliton solutions by using the Hirota bilinear method. Moreover, we derive lump solutions where two numerical examples are tested. Breather wave solutions were also explored by using a variety of distinct schemes. We also determine other traveling wave solutions, rational solutions, periodic solutions, exponential solutions, ratio of trigonometric or hyperbolic functions, and others.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信