三营养食物网模型中的扩散驱动不稳定性:从图灵到非图灵模式和波浪

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Bhaskar Chakraborty , Sounov Marick , Nandadulal Bairagi
{"title":"三营养食物网模型中的扩散驱动不稳定性:从图灵到非图灵模式和波浪","authors":"Bhaskar Chakraborty ,&nbsp;Sounov Marick ,&nbsp;Nandadulal Bairagi","doi":"10.1016/j.chaos.2024.115634","DOIUrl":null,"url":null,"abstract":"<div><div>This work uses a reaction–diffusion system to explore self-organized pattern-forming phenomena through species distribution in a tri-trophic food web system. The interacting non-diffusive system involves a bottom prey, one specialist intermediate predator dependent on the bottom prey, and a generalist top predator, having its food preference regulation on both the bottom prey and intermediate predator. The system encounters temporal instability through Hopf-bifurcation and chaotic oscillations about the coexistence equilibrium with over-dependency on a particular food source. We provide analytical conditions for diffusion-driven Turing and wave instabilities. A weakly nonlinear analysis (WNA) is performed to examine the patterns of Turing instability close to the critical threshold. Numerical simulations show spatiotemporal patterns like spots, stripes, a mixture of spots &amp; stripes and spatiotemporal chaos. The numerical investigations highlight the non-Turing instabilities consisting of Hopf, wave, Hopf-Turing, Hopf-wave. The diffusion of species suppresses regular and irregular spatiotemporal oscillations, giving stability to the system. Using a heat map of the Lyapunov exponents of the time series for different pairs of parameter values in a bi-parametric plane, it is demonstrated that the Turing pattern dominates the oscillatory Hopf pattern if the critical parameter value is from the Hopf-Turing region and is close to the Hopf bifurcation threshold, but the Hopf pattern dominates if the parameter pair is significantly away from it. The qualitative comparison of the non-Turing instabilities is provided with the corresponding spatiotemporal distribution of the species. It is observed that the high-amplitude oscillations of Hopf and Hopf-dominated non-Turing oscillations are vicious for the spatially distributed population.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diffusion-driven instabilities in a tri-trophic food web model: From Turing to non-Turing patterns and waves\",\"authors\":\"Bhaskar Chakraborty ,&nbsp;Sounov Marick ,&nbsp;Nandadulal Bairagi\",\"doi\":\"10.1016/j.chaos.2024.115634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work uses a reaction–diffusion system to explore self-organized pattern-forming phenomena through species distribution in a tri-trophic food web system. The interacting non-diffusive system involves a bottom prey, one specialist intermediate predator dependent on the bottom prey, and a generalist top predator, having its food preference regulation on both the bottom prey and intermediate predator. The system encounters temporal instability through Hopf-bifurcation and chaotic oscillations about the coexistence equilibrium with over-dependency on a particular food source. We provide analytical conditions for diffusion-driven Turing and wave instabilities. A weakly nonlinear analysis (WNA) is performed to examine the patterns of Turing instability close to the critical threshold. Numerical simulations show spatiotemporal patterns like spots, stripes, a mixture of spots &amp; stripes and spatiotemporal chaos. The numerical investigations highlight the non-Turing instabilities consisting of Hopf, wave, Hopf-Turing, Hopf-wave. The diffusion of species suppresses regular and irregular spatiotemporal oscillations, giving stability to the system. Using a heat map of the Lyapunov exponents of the time series for different pairs of parameter values in a bi-parametric plane, it is demonstrated that the Turing pattern dominates the oscillatory Hopf pattern if the critical parameter value is from the Hopf-Turing region and is close to the Hopf bifurcation threshold, but the Hopf pattern dominates if the parameter pair is significantly away from it. The qualitative comparison of the non-Turing instabilities is provided with the corresponding spatiotemporal distribution of the species. It is observed that the high-amplitude oscillations of Hopf and Hopf-dominated non-Turing oscillations are vicious for the spatially distributed population.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S096007792401186X\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096007792401186X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

这项研究利用反应-扩散系统来探索三营养食物网系统中物种分布的自组织模式形成现象。这个相互作用的非扩散系统包括一个底层猎物、一个依赖于底层猎物的专业中间捕食者和一个对底层猎物和中间捕食者都有食物偏好调节作用的通才顶层捕食者。该系统通过霍普夫分岔(Hopf-bifurcation)遇到时间不稳定性,并在过度依赖某一特定食物源的共存平衡点附近发生混沌振荡。我们为扩散驱动的图灵和波不稳定性提供了分析条件。我们进行了弱非线性分析(WNA),以研究临界阈值附近的图灵不稳定性模式。数值模拟显示了时空模式,如斑点、条纹、斑点与条纹的混合以及时空混沌。数值研究突出了由霍普夫、波、霍普夫-图灵、霍普夫-波组成的非图灵不稳定性。物种的扩散抑制了规则和不规则的时空振荡,使系统趋于稳定。利用双参数平面上不同参数值对的时间序列 Lyapunov 指数热图,可以证明如果临界参数值来自霍普夫-图灵区域并接近霍普夫分岔阈值,图灵模式会主导振荡的霍普夫模式,但如果参数对明显远离该阈值,则霍普夫模式会主导振荡的霍普夫模式。非图灵不稳定性的定性比较是通过相应的物种时空分布进行的。研究发现,霍普夫振荡和霍普夫主导的非图灵振荡的高振幅振荡对于空间分布的种群来说是恶性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diffusion-driven instabilities in a tri-trophic food web model: From Turing to non-Turing patterns and waves
This work uses a reaction–diffusion system to explore self-organized pattern-forming phenomena through species distribution in a tri-trophic food web system. The interacting non-diffusive system involves a bottom prey, one specialist intermediate predator dependent on the bottom prey, and a generalist top predator, having its food preference regulation on both the bottom prey and intermediate predator. The system encounters temporal instability through Hopf-bifurcation and chaotic oscillations about the coexistence equilibrium with over-dependency on a particular food source. We provide analytical conditions for diffusion-driven Turing and wave instabilities. A weakly nonlinear analysis (WNA) is performed to examine the patterns of Turing instability close to the critical threshold. Numerical simulations show spatiotemporal patterns like spots, stripes, a mixture of spots & stripes and spatiotemporal chaos. The numerical investigations highlight the non-Turing instabilities consisting of Hopf, wave, Hopf-Turing, Hopf-wave. The diffusion of species suppresses regular and irregular spatiotemporal oscillations, giving stability to the system. Using a heat map of the Lyapunov exponents of the time series for different pairs of parameter values in a bi-parametric plane, it is demonstrated that the Turing pattern dominates the oscillatory Hopf pattern if the critical parameter value is from the Hopf-Turing region and is close to the Hopf bifurcation threshold, but the Hopf pattern dominates if the parameter pair is significantly away from it. The qualitative comparison of the non-Turing instabilities is provided with the corresponding spatiotemporal distribution of the species. It is observed that the high-amplitude oscillations of Hopf and Hopf-dominated non-Turing oscillations are vicious for the spatially distributed population.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信