{"title":"从层状二维碳到具有与金刚石相关物理性质的三维四面体同素异形体 C12 和 C18:晶体化学和 DFT 研究","authors":"Samir F. Matar","doi":"10.1016/j.progsolidstchem.2024.100492","DOIUrl":null,"url":null,"abstract":"<div><div>Mechanisms of changes from 2D to 3D (D = dimensionality) involving 2D C(sp<sup>2</sup>) trigonal paving to C(sp<sup>3</sup>) tetrahedral stacking are proposed through puckering of the 2D layers on one hand and interlayer insertion of extra C on the other hand. Such transformations, led to 3D hexagonal C<sub>12</sub> and C<sub>18</sub> allotropes respectively characterized by <strong>lon</strong> and <strong>bac</strong> topologies. Using density functional theory DFT calculations, the two allotropes were found cohesive and stable both mechanically (elastic properties) and dynamically (phonons). Comparisons of the physical properties with known <strong>uni</strong> C<sub>6</sub> were established letting identify ranges of large Vickers hardness: H<sub>V</sub> (<strong>uni</strong> C<sub>6</sub>) = 89 GPa, H<sub>V</sub> (<strong>lon</strong> C<sub>12</sub>) = 97 GPa, and H<sub>V</sub> (<strong>bac</strong> C<sub>18</sub>) = 70 GPa. Whilst C<sub>6</sub> was identified with acoustic phonons instability, C<sub>12</sub> and C<sub>18</sub> were found stable dynamically throughout the acoustic and optic frequency ranges. Furthering on the thermal properties the allotropes were characterized with a temperature dependence curve of the specific heat C<sub>V</sub> close to experimental data of diamond with best fit for novel C<sub>18</sub>. The electronic band structures reveal a small band gap of 1 eV for <strong>uni</strong> C<sub>6</sub> and larger direct band gap of 3 eV for the two other 3D allotropes. Such modulations of the electronic and physical properties should open scopes of carbon research.</div></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"76 ","pages":"Article 100492"},"PeriodicalIF":9.1000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From layered 2D carbon to 3D tetrahedral allotropes C12 and C18 with physical properties related to diamond: Crystal chemistry and DFT investigations\",\"authors\":\"Samir F. Matar\",\"doi\":\"10.1016/j.progsolidstchem.2024.100492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mechanisms of changes from 2D to 3D (D = dimensionality) involving 2D C(sp<sup>2</sup>) trigonal paving to C(sp<sup>3</sup>) tetrahedral stacking are proposed through puckering of the 2D layers on one hand and interlayer insertion of extra C on the other hand. Such transformations, led to 3D hexagonal C<sub>12</sub> and C<sub>18</sub> allotropes respectively characterized by <strong>lon</strong> and <strong>bac</strong> topologies. Using density functional theory DFT calculations, the two allotropes were found cohesive and stable both mechanically (elastic properties) and dynamically (phonons). Comparisons of the physical properties with known <strong>uni</strong> C<sub>6</sub> were established letting identify ranges of large Vickers hardness: H<sub>V</sub> (<strong>uni</strong> C<sub>6</sub>) = 89 GPa, H<sub>V</sub> (<strong>lon</strong> C<sub>12</sub>) = 97 GPa, and H<sub>V</sub> (<strong>bac</strong> C<sub>18</sub>) = 70 GPa. Whilst C<sub>6</sub> was identified with acoustic phonons instability, C<sub>12</sub> and C<sub>18</sub> were found stable dynamically throughout the acoustic and optic frequency ranges. Furthering on the thermal properties the allotropes were characterized with a temperature dependence curve of the specific heat C<sub>V</sub> close to experimental data of diamond with best fit for novel C<sub>18</sub>. The electronic band structures reveal a small band gap of 1 eV for <strong>uni</strong> C<sub>6</sub> and larger direct band gap of 3 eV for the two other 3D allotropes. Such modulations of the electronic and physical properties should open scopes of carbon research.</div></div>\",\"PeriodicalId\":415,\"journal\":{\"name\":\"Progress in Solid State Chemistry\",\"volume\":\"76 \",\"pages\":\"Article 100492\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Solid State Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079678624000554\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079678624000554","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
From layered 2D carbon to 3D tetrahedral allotropes C12 and C18 with physical properties related to diamond: Crystal chemistry and DFT investigations
Mechanisms of changes from 2D to 3D (D = dimensionality) involving 2D C(sp2) trigonal paving to C(sp3) tetrahedral stacking are proposed through puckering of the 2D layers on one hand and interlayer insertion of extra C on the other hand. Such transformations, led to 3D hexagonal C12 and C18 allotropes respectively characterized by lon and bac topologies. Using density functional theory DFT calculations, the two allotropes were found cohesive and stable both mechanically (elastic properties) and dynamically (phonons). Comparisons of the physical properties with known uni C6 were established letting identify ranges of large Vickers hardness: HV (uni C6) = 89 GPa, HV (lon C12) = 97 GPa, and HV (bac C18) = 70 GPa. Whilst C6 was identified with acoustic phonons instability, C12 and C18 were found stable dynamically throughout the acoustic and optic frequency ranges. Furthering on the thermal properties the allotropes were characterized with a temperature dependence curve of the specific heat CV close to experimental data of diamond with best fit for novel C18. The electronic band structures reveal a small band gap of 1 eV for uni C6 and larger direct band gap of 3 eV for the two other 3D allotropes. Such modulations of the electronic and physical properties should open scopes of carbon research.
期刊介绍:
Progress in Solid State Chemistry offers critical reviews and specialized articles written by leading experts in the field, providing a comprehensive view of solid-state chemistry. It addresses the challenge of dispersed literature by offering up-to-date assessments of research progress and recent developments. Emphasis is placed on the relationship between physical properties and structural chemistry, particularly imperfections like vacancies and dislocations. The reviews published in Progress in Solid State Chemistry emphasize critical evaluation of the field, along with indications of current problems and future directions. Papers are not intended to be bibliographic in nature but rather to inform a broad range of readers in an inherently multidisciplinary field by providing expert treatises oriented both towards specialists in different areas of the solid state and towards nonspecialists. The authorship is international, and the subject matter will be of interest to chemists, materials scientists, physicists, metallurgists, crystallographers, ceramists, and engineers interested in the solid state.