Mfano Charles , Sayoki G. Mfinanga , G.A. Lyakurwa , Delfim F.M. Torres , Verdiana G. Masanja
{"title":"狂犬病在人类和狗中传播动态的参数估计和不确定性评估","authors":"Mfano Charles , Sayoki G. Mfinanga , G.A. Lyakurwa , Delfim F.M. Torres , Verdiana G. Masanja","doi":"10.1016/j.chaos.2024.115633","DOIUrl":null,"url":null,"abstract":"<div><div>Rabies remains a pressing global public health issue, demanding effective modeling and control strategies. This study focused on developing a mathematical model using ordinary differential equations (ODEs) to estimate parameters and assess uncertainties related to the transmission dynamics of rabies in humans and dogs. To determine model parameters and address uncertainties, next-generation matrices were utilized to calculate the basic reproduction number <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. Furthermore, the Partial Rank Correlation Coefficient was used to identify parameters that significantly influence model outputs. The analysis of equilibrium states revealed that the rabies-free equilibrium is globally asymptotically stable when <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo><</mo><mn>1</mn></mrow></math></span>, whereas the endemic equilibrium is globally asymptotically stable when <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≥</mo><mn>1</mn></mrow></math></span>. To reduce the severity of rabies and align with the Global Rabies Control (GRC) initiative by 2030, the study recommends implementing control strategies targeting indoor domestic dogs.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameters estimation and uncertainty assessment in the transmission dynamics of rabies in humans and dogs\",\"authors\":\"Mfano Charles , Sayoki G. Mfinanga , G.A. Lyakurwa , Delfim F.M. Torres , Verdiana G. Masanja\",\"doi\":\"10.1016/j.chaos.2024.115633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Rabies remains a pressing global public health issue, demanding effective modeling and control strategies. This study focused on developing a mathematical model using ordinary differential equations (ODEs) to estimate parameters and assess uncertainties related to the transmission dynamics of rabies in humans and dogs. To determine model parameters and address uncertainties, next-generation matrices were utilized to calculate the basic reproduction number <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. Furthermore, the Partial Rank Correlation Coefficient was used to identify parameters that significantly influence model outputs. The analysis of equilibrium states revealed that the rabies-free equilibrium is globally asymptotically stable when <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo><</mo><mn>1</mn></mrow></math></span>, whereas the endemic equilibrium is globally asymptotically stable when <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≥</mo><mn>1</mn></mrow></math></span>. To reduce the severity of rabies and align with the Global Rabies Control (GRC) initiative by 2030, the study recommends implementing control strategies targeting indoor domestic dogs.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077924011858\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924011858","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Parameters estimation and uncertainty assessment in the transmission dynamics of rabies in humans and dogs
Rabies remains a pressing global public health issue, demanding effective modeling and control strategies. This study focused on developing a mathematical model using ordinary differential equations (ODEs) to estimate parameters and assess uncertainties related to the transmission dynamics of rabies in humans and dogs. To determine model parameters and address uncertainties, next-generation matrices were utilized to calculate the basic reproduction number . Furthermore, the Partial Rank Correlation Coefficient was used to identify parameters that significantly influence model outputs. The analysis of equilibrium states revealed that the rabies-free equilibrium is globally asymptotically stable when , whereas the endemic equilibrium is globally asymptotically stable when . To reduce the severity of rabies and align with the Global Rabies Control (GRC) initiative by 2030, the study recommends implementing control strategies targeting indoor domestic dogs.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.