Cuiyun He , Yukun Huang , Shengyu Liu , Jianmin Zen , Ruyi Jiang
{"title":"钕硒二元体系相平衡和热力学评估的再研究","authors":"Cuiyun He , Yukun Huang , Shengyu Liu , Jianmin Zen , Ruyi Jiang","doi":"10.1016/j.calphad.2024.102757","DOIUrl":null,"url":null,"abstract":"<div><div>The Nd-Sn phase diagram has been investigated within the range of 20–80 at.% Sn using X-ray diffraction (XRD), scanning electron microscope equipped with energy dispersive spectrometer (SEM-EDS), and differential scanning calorimetric (DSC). In addition to the nine known compounds, Nd<sub>5</sub>Sn<sub>3</sub>, Nd<sub>5</sub>Sn<sub>4</sub>, Nd<sub>11</sub>Sn<sub>10</sub>, NdSn, Nd<sub>3</sub>Sn<sub>5</sub>, NdSn<sub>2</sub>, Nd<sub>3</sub>Sn<sub>7</sub>, Nd<sub>2</sub>Sn<sub>5</sub> and NdSn<sub>3</sub>, two reported compounds, Nd<sub>3</sub>Sn and Nd<sub>2</sub>Sn<sub>3,</sub> as well as two new compounds Nd<sub>2</sub>Sn and Nd<sub>4</sub>Sn<sub>5</sub>, have been detected. The formation of Nd<sub>2</sub>Sn, Nd<sub>4</sub>Sn<sub>5</sub> and Nd<sub>2</sub>Sn<sub>3</sub> has been determined as follows: Nd<sub>2</sub>Sn forms by peritectoid reaction Nd<sub>3</sub>Sn + Nd<sub>5</sub>Sn<sub>3</sub> → Nd<sub>2</sub>Sn at 1134 °C; Nd<sub>4</sub>Sn<sub>5</sub> and Nd<sub>2</sub>Sn<sub>3</sub> form by peritectic reaction at 1168 °C and 1146 °C, respectively. Nd<sub>3</sub>Sn and Nd<sub>3</sub>Sn<sub>5</sub> are only stable at high temperatures, Nd<sub>3</sub>Sn forms by a peritectic reaction at 1163 °C and decomposes at 1114 °C, and Nd<sub>3</sub>Sn<sub>5</sub> is formed via a peritectic reaction at 1153 °C and decomposes at 1136 °C. Additionally, five invariant reaction temperature have been updated. The Nd-Sn system was modeled using the Calphad approach, incorporating new experimental data along with all other available experimental information. A comprehensive thermodynamic description of the Nd-Sn system has been obtained, and extensive comparisons between calculated and experimental data indicating that almost all adopted experimental and theoretical data are satisfactorily matched.</div></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":"87 ","pages":"Article 102757"},"PeriodicalIF":1.9000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Re-investigation the phase equilibria and thermodynamic assessment of the Nd-Sn binary system\",\"authors\":\"Cuiyun He , Yukun Huang , Shengyu Liu , Jianmin Zen , Ruyi Jiang\",\"doi\":\"10.1016/j.calphad.2024.102757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Nd-Sn phase diagram has been investigated within the range of 20–80 at.% Sn using X-ray diffraction (XRD), scanning electron microscope equipped with energy dispersive spectrometer (SEM-EDS), and differential scanning calorimetric (DSC). In addition to the nine known compounds, Nd<sub>5</sub>Sn<sub>3</sub>, Nd<sub>5</sub>Sn<sub>4</sub>, Nd<sub>11</sub>Sn<sub>10</sub>, NdSn, Nd<sub>3</sub>Sn<sub>5</sub>, NdSn<sub>2</sub>, Nd<sub>3</sub>Sn<sub>7</sub>, Nd<sub>2</sub>Sn<sub>5</sub> and NdSn<sub>3</sub>, two reported compounds, Nd<sub>3</sub>Sn and Nd<sub>2</sub>Sn<sub>3,</sub> as well as two new compounds Nd<sub>2</sub>Sn and Nd<sub>4</sub>Sn<sub>5</sub>, have been detected. The formation of Nd<sub>2</sub>Sn, Nd<sub>4</sub>Sn<sub>5</sub> and Nd<sub>2</sub>Sn<sub>3</sub> has been determined as follows: Nd<sub>2</sub>Sn forms by peritectoid reaction Nd<sub>3</sub>Sn + Nd<sub>5</sub>Sn<sub>3</sub> → Nd<sub>2</sub>Sn at 1134 °C; Nd<sub>4</sub>Sn<sub>5</sub> and Nd<sub>2</sub>Sn<sub>3</sub> form by peritectic reaction at 1168 °C and 1146 °C, respectively. Nd<sub>3</sub>Sn and Nd<sub>3</sub>Sn<sub>5</sub> are only stable at high temperatures, Nd<sub>3</sub>Sn forms by a peritectic reaction at 1163 °C and decomposes at 1114 °C, and Nd<sub>3</sub>Sn<sub>5</sub> is formed via a peritectic reaction at 1153 °C and decomposes at 1136 °C. Additionally, five invariant reaction temperature have been updated. The Nd-Sn system was modeled using the Calphad approach, incorporating new experimental data along with all other available experimental information. A comprehensive thermodynamic description of the Nd-Sn system has been obtained, and extensive comparisons between calculated and experimental data indicating that almost all adopted experimental and theoretical data are satisfactorily matched.</div></div>\",\"PeriodicalId\":9436,\"journal\":{\"name\":\"Calphad-computer Coupling of Phase Diagrams and Thermochemistry\",\"volume\":\"87 \",\"pages\":\"Article 102757\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Calphad-computer Coupling of Phase Diagrams and Thermochemistry\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0364591624000993\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0364591624000993","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Re-investigation the phase equilibria and thermodynamic assessment of the Nd-Sn binary system
The Nd-Sn phase diagram has been investigated within the range of 20–80 at.% Sn using X-ray diffraction (XRD), scanning electron microscope equipped with energy dispersive spectrometer (SEM-EDS), and differential scanning calorimetric (DSC). In addition to the nine known compounds, Nd5Sn3, Nd5Sn4, Nd11Sn10, NdSn, Nd3Sn5, NdSn2, Nd3Sn7, Nd2Sn5 and NdSn3, two reported compounds, Nd3Sn and Nd2Sn3, as well as two new compounds Nd2Sn and Nd4Sn5, have been detected. The formation of Nd2Sn, Nd4Sn5 and Nd2Sn3 has been determined as follows: Nd2Sn forms by peritectoid reaction Nd3Sn + Nd5Sn3 → Nd2Sn at 1134 °C; Nd4Sn5 and Nd2Sn3 form by peritectic reaction at 1168 °C and 1146 °C, respectively. Nd3Sn and Nd3Sn5 are only stable at high temperatures, Nd3Sn forms by a peritectic reaction at 1163 °C and decomposes at 1114 °C, and Nd3Sn5 is formed via a peritectic reaction at 1153 °C and decomposes at 1136 °C. Additionally, five invariant reaction temperature have been updated. The Nd-Sn system was modeled using the Calphad approach, incorporating new experimental data along with all other available experimental information. A comprehensive thermodynamic description of the Nd-Sn system has been obtained, and extensive comparisons between calculated and experimental data indicating that almost all adopted experimental and theoretical data are satisfactorily matched.
期刊介绍:
The design of industrial processes requires reliable thermodynamic data. CALPHAD (Computer Coupling of Phase Diagrams and Thermochemistry) aims to promote computational thermodynamics through development of models to represent thermodynamic properties for various phases which permit prediction of properties of multicomponent systems from those of binary and ternary subsystems, critical assessment of data and their incorporation into self-consistent databases, development of software to optimize and derive thermodynamic parameters and the development and use of databanks for calculations to improve understanding of various industrial and technological processes. This work is disseminated through the CALPHAD journal and its annual conference.