使用三重注意力增强条件自动编码器的飞机装配变形代理建模框架

IF 12.2 1区 工程技术 Q1 ENGINEERING, INDUSTRIAL
Yifan Zhang , Qiang Zhang , Ye Hu , Qing Wang , Liang Cheng , Yinglin Ke
{"title":"使用三重注意力增强条件自动编码器的飞机装配变形代理建模框架","authors":"Yifan Zhang ,&nbsp;Qiang Zhang ,&nbsp;Ye Hu ,&nbsp;Qing Wang ,&nbsp;Liang Cheng ,&nbsp;Yinglin Ke","doi":"10.1016/j.jmsy.2024.10.009","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a framework for surrogating aircraft structural deformation using simulation data. The framework compresses high-dimensional field data into embeddings via Principal Component Analysis (PCA) and advanced deep learning methods. It establishes a mapping from discretized control points to these embeddings, enabling complete surrogation from the parameter space to structural deformation. The approach facilitates simultaneous surrogation of both displacement and stress fields, providing a robust evaluation metric for assessing assembly quality. Furthermore, the performance of the proposed PCA and deep learning-based surrogation methods is evaluated using multiple metrics. Results demonstrate that the proposed Conditional Convolutional Autoencoders, enhanced by Triplet attention (C2AE-Tri), achieve higher accuracy and over 60 % data reduction compared to the PCA baseline. This improvement highlights the framework's scalability and utility, particularly when data acquisition is challenging or costly.</div></div>","PeriodicalId":16227,"journal":{"name":"Journal of Manufacturing Systems","volume":"77 ","pages":"Pages 708-729"},"PeriodicalIF":12.2000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A surrogate modeling framework for aircraft assembly deformation using triplet attention-enhanced conditional autoencoder\",\"authors\":\"Yifan Zhang ,&nbsp;Qiang Zhang ,&nbsp;Ye Hu ,&nbsp;Qing Wang ,&nbsp;Liang Cheng ,&nbsp;Yinglin Ke\",\"doi\":\"10.1016/j.jmsy.2024.10.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper introduces a framework for surrogating aircraft structural deformation using simulation data. The framework compresses high-dimensional field data into embeddings via Principal Component Analysis (PCA) and advanced deep learning methods. It establishes a mapping from discretized control points to these embeddings, enabling complete surrogation from the parameter space to structural deformation. The approach facilitates simultaneous surrogation of both displacement and stress fields, providing a robust evaluation metric for assessing assembly quality. Furthermore, the performance of the proposed PCA and deep learning-based surrogation methods is evaluated using multiple metrics. Results demonstrate that the proposed Conditional Convolutional Autoencoders, enhanced by Triplet attention (C2AE-Tri), achieve higher accuracy and over 60 % data reduction compared to the PCA baseline. This improvement highlights the framework's scalability and utility, particularly when data acquisition is challenging or costly.</div></div>\",\"PeriodicalId\":16227,\"journal\":{\"name\":\"Journal of Manufacturing Systems\",\"volume\":\"77 \",\"pages\":\"Pages 708-729\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Manufacturing Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0278612524002358\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278612524002358","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种利用模拟数据代理飞机结构变形的框架。该框架通过主成分分析(PCA)和先进的深度学习方法将高维现场数据压缩为嵌入。它建立了从离散控制点到这些嵌入的映射,实现了从参数空间到结构变形的完整代用。该方法有助于同时代用位移和应力场,为评估装配质量提供了一个稳健的评估指标。此外,还使用多种指标评估了所提出的 PCA 和基于深度学习的代用方法的性能。结果表明,与 PCA 基线相比,通过三重注意(C2AE-Tri)增强的条件卷积自动编码器实现了更高的准确性,并减少了 60% 以上的数据。这一改进凸显了该框架的可扩展性和实用性,尤其是在数据采集具有挑战性或成本高昂的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A surrogate modeling framework for aircraft assembly deformation using triplet attention-enhanced conditional autoencoder
This paper introduces a framework for surrogating aircraft structural deformation using simulation data. The framework compresses high-dimensional field data into embeddings via Principal Component Analysis (PCA) and advanced deep learning methods. It establishes a mapping from discretized control points to these embeddings, enabling complete surrogation from the parameter space to structural deformation. The approach facilitates simultaneous surrogation of both displacement and stress fields, providing a robust evaluation metric for assessing assembly quality. Furthermore, the performance of the proposed PCA and deep learning-based surrogation methods is evaluated using multiple metrics. Results demonstrate that the proposed Conditional Convolutional Autoencoders, enhanced by Triplet attention (C2AE-Tri), achieve higher accuracy and over 60 % data reduction compared to the PCA baseline. This improvement highlights the framework's scalability and utility, particularly when data acquisition is challenging or costly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Manufacturing Systems
Journal of Manufacturing Systems 工程技术-工程:工业
CiteScore
23.30
自引率
13.20%
发文量
216
审稿时长
25 days
期刊介绍: The Journal of Manufacturing Systems is dedicated to showcasing cutting-edge fundamental and applied research in manufacturing at the systems level. Encompassing products, equipment, people, information, control, and support functions, manufacturing systems play a pivotal role in the economical and competitive development, production, delivery, and total lifecycle of products, meeting market and societal needs. With a commitment to publishing archival scholarly literature, the journal strives to advance the state of the art in manufacturing systems and foster innovation in crafting efficient, robust, and sustainable manufacturing systems. The focus extends from equipment-level considerations to the broader scope of the extended enterprise. The Journal welcomes research addressing challenges across various scales, including nano, micro, and macro-scale manufacturing, and spanning diverse sectors such as aerospace, automotive, energy, and medical device manufacturing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信