基于情景模拟的机床数字孪生调试方法

IF 12.2 1区 工程技术 Q1 ENGINEERING, INDUSTRIAL
Xuehao Sun, Fengli Zhang, Xiaotong Niu, Jinjiang Wang
{"title":"基于情景模拟的机床数字孪生调试方法","authors":"Xuehao Sun,&nbsp;Fengli Zhang,&nbsp;Xiaotong Niu,&nbsp;Jinjiang Wang","doi":"10.1016/j.jmsy.2024.10.017","DOIUrl":null,"url":null,"abstract":"<div><div>Commissioning machine tools before machining is crucial for improving efficiency and performance. Current virtual commissioning technologies have limitations, such as detachment from operation scenarios, which can reduce commissioning effect. This paper presents a digital twin commissioning method for machine tools based on scenario simulation. The method takes into account the machining conditions to build virtual machining scenarios and carries out virtual machining commissioning based on a twin model. The digital twin model of the machine tool is constructed using the unified multi-domain modelling language to ensure consistent response to machining conditions, control effect, and mapping effect of real and virtual parameter changes. Secondly, the machining scenario simulation strategy is formulated and the decoupling analysis for the machining process is carried out to achieve the parametric representation of the working conditions and the simulation of the machining loads. Finally, the parameter adjustment and optimization are investigated under variable machining conditions and variable parameters. The experimental results demonstrate that the proposed method reduces the commissioning time of the spindle machining system of machine tools, decreases the response time by approximately 12 %, and reduces the steady-state error by about 52 %. These findings confirm the effectiveness of the proposed method and its feasibility for field application.</div></div>","PeriodicalId":16227,"journal":{"name":"Journal of Manufacturing Systems","volume":"77 ","pages":"Pages 697-707"},"PeriodicalIF":12.2000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A digital twin commissioning method for machine tools based on scenario simulation\",\"authors\":\"Xuehao Sun,&nbsp;Fengli Zhang,&nbsp;Xiaotong Niu,&nbsp;Jinjiang Wang\",\"doi\":\"10.1016/j.jmsy.2024.10.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Commissioning machine tools before machining is crucial for improving efficiency and performance. Current virtual commissioning technologies have limitations, such as detachment from operation scenarios, which can reduce commissioning effect. This paper presents a digital twin commissioning method for machine tools based on scenario simulation. The method takes into account the machining conditions to build virtual machining scenarios and carries out virtual machining commissioning based on a twin model. The digital twin model of the machine tool is constructed using the unified multi-domain modelling language to ensure consistent response to machining conditions, control effect, and mapping effect of real and virtual parameter changes. Secondly, the machining scenario simulation strategy is formulated and the decoupling analysis for the machining process is carried out to achieve the parametric representation of the working conditions and the simulation of the machining loads. Finally, the parameter adjustment and optimization are investigated under variable machining conditions and variable parameters. The experimental results demonstrate that the proposed method reduces the commissioning time of the spindle machining system of machine tools, decreases the response time by approximately 12 %, and reduces the steady-state error by about 52 %. These findings confirm the effectiveness of the proposed method and its feasibility for field application.</div></div>\",\"PeriodicalId\":16227,\"journal\":{\"name\":\"Journal of Manufacturing Systems\",\"volume\":\"77 \",\"pages\":\"Pages 697-707\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Manufacturing Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0278612524002425\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278612524002425","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

机床加工前的调试对于提高效率和性能至关重要。目前的虚拟调试技术存在脱离操作场景等局限性,会降低调试效果。本文提出了一种基于情景模拟的机床数字孪生调试方法。该方法结合加工条件建立虚拟加工场景,并基于孪生模型进行虚拟加工调试。机床的数字孪生模型采用统一的多域建模语言构建,以确保对加工条件、控制效果以及真实参数变化与虚拟参数变化的映射效果做出一致的响应。其次,制定加工场景仿真策略,对加工过程进行解耦分析,实现工况参数化表示和加工载荷仿真。最后,研究了变加工条件和变参数下的参数调整和优化。实验结果表明,所提出的方法缩短了机床主轴加工系统的调试时间,减少了约 12 % 的响应时间,并减少了约 52 % 的稳态误差。这些结果证实了所提方法的有效性及其现场应用的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A digital twin commissioning method for machine tools based on scenario simulation
Commissioning machine tools before machining is crucial for improving efficiency and performance. Current virtual commissioning technologies have limitations, such as detachment from operation scenarios, which can reduce commissioning effect. This paper presents a digital twin commissioning method for machine tools based on scenario simulation. The method takes into account the machining conditions to build virtual machining scenarios and carries out virtual machining commissioning based on a twin model. The digital twin model of the machine tool is constructed using the unified multi-domain modelling language to ensure consistent response to machining conditions, control effect, and mapping effect of real and virtual parameter changes. Secondly, the machining scenario simulation strategy is formulated and the decoupling analysis for the machining process is carried out to achieve the parametric representation of the working conditions and the simulation of the machining loads. Finally, the parameter adjustment and optimization are investigated under variable machining conditions and variable parameters. The experimental results demonstrate that the proposed method reduces the commissioning time of the spindle machining system of machine tools, decreases the response time by approximately 12 %, and reduces the steady-state error by about 52 %. These findings confirm the effectiveness of the proposed method and its feasibility for field application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Manufacturing Systems
Journal of Manufacturing Systems 工程技术-工程:工业
CiteScore
23.30
自引率
13.20%
发文量
216
审稿时长
25 days
期刊介绍: The Journal of Manufacturing Systems is dedicated to showcasing cutting-edge fundamental and applied research in manufacturing at the systems level. Encompassing products, equipment, people, information, control, and support functions, manufacturing systems play a pivotal role in the economical and competitive development, production, delivery, and total lifecycle of products, meeting market and societal needs. With a commitment to publishing archival scholarly literature, the journal strives to advance the state of the art in manufacturing systems and foster innovation in crafting efficient, robust, and sustainable manufacturing systems. The focus extends from equipment-level considerations to the broader scope of the extended enterprise. The Journal welcomes research addressing challenges across various scales, including nano, micro, and macro-scale manufacturing, and spanning diverse sectors such as aerospace, automotive, energy, and medical device manufacturing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信