{"title":"深度专家网络:通过完全可解释的神经符号人工智能实现知识型故障诊断的统一方法","authors":"Qi Li, Yuekai Liu, Shilin Sun, Zhaoye Qin, Fulei Chu","doi":"10.1016/j.jmsy.2024.10.007","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, intelligent fault diagnosis (IFD) based on Artificial Intelligence (AI) has gained significant attention and achieved remarkable breakthroughs. However, the black-box property of AI-enabled IFD may render it non-interpretable, which is essential for safety-critical industrial assets. In this paper, we propose a fully interpretable IFD approach that incorporates expert knowledge using neuro-symbolic AI. The proposed approach, named Deep Expert Network, defines neuro-symbolic node, including signal processing operators, statistical operators, and logical operators to establish a clear semantic space for the network. All operators are connected with trainable weights that decide the connections. End-to-end and gradient-based learning are utilized to optimize both the model structure weights and parameters to fit the fault signal and obtain a fully interpretable decision route. The transparency of model, generalization ability toward unseen working conditions, and robustness to noise attack are demonstrated through case study of rotating machinery, paving the way for future industrial applications.</div></div>","PeriodicalId":16227,"journal":{"name":"Journal of Manufacturing Systems","volume":"77 ","pages":"Pages 652-661"},"PeriodicalIF":12.2000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep expert network: A unified method toward knowledge-informed fault diagnosis via fully interpretable neuro-symbolic AI\",\"authors\":\"Qi Li, Yuekai Liu, Shilin Sun, Zhaoye Qin, Fulei Chu\",\"doi\":\"10.1016/j.jmsy.2024.10.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In recent years, intelligent fault diagnosis (IFD) based on Artificial Intelligence (AI) has gained significant attention and achieved remarkable breakthroughs. However, the black-box property of AI-enabled IFD may render it non-interpretable, which is essential for safety-critical industrial assets. In this paper, we propose a fully interpretable IFD approach that incorporates expert knowledge using neuro-symbolic AI. The proposed approach, named Deep Expert Network, defines neuro-symbolic node, including signal processing operators, statistical operators, and logical operators to establish a clear semantic space for the network. All operators are connected with trainable weights that decide the connections. End-to-end and gradient-based learning are utilized to optimize both the model structure weights and parameters to fit the fault signal and obtain a fully interpretable decision route. The transparency of model, generalization ability toward unseen working conditions, and robustness to noise attack are demonstrated through case study of rotating machinery, paving the way for future industrial applications.</div></div>\",\"PeriodicalId\":16227,\"journal\":{\"name\":\"Journal of Manufacturing Systems\",\"volume\":\"77 \",\"pages\":\"Pages 652-661\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Manufacturing Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0278612524002334\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278612524002334","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Deep expert network: A unified method toward knowledge-informed fault diagnosis via fully interpretable neuro-symbolic AI
In recent years, intelligent fault diagnosis (IFD) based on Artificial Intelligence (AI) has gained significant attention and achieved remarkable breakthroughs. However, the black-box property of AI-enabled IFD may render it non-interpretable, which is essential for safety-critical industrial assets. In this paper, we propose a fully interpretable IFD approach that incorporates expert knowledge using neuro-symbolic AI. The proposed approach, named Deep Expert Network, defines neuro-symbolic node, including signal processing operators, statistical operators, and logical operators to establish a clear semantic space for the network. All operators are connected with trainable weights that decide the connections. End-to-end and gradient-based learning are utilized to optimize both the model structure weights and parameters to fit the fault signal and obtain a fully interpretable decision route. The transparency of model, generalization ability toward unseen working conditions, and robustness to noise attack are demonstrated through case study of rotating machinery, paving the way for future industrial applications.
期刊介绍:
The Journal of Manufacturing Systems is dedicated to showcasing cutting-edge fundamental and applied research in manufacturing at the systems level. Encompassing products, equipment, people, information, control, and support functions, manufacturing systems play a pivotal role in the economical and competitive development, production, delivery, and total lifecycle of products, meeting market and societal needs.
With a commitment to publishing archival scholarly literature, the journal strives to advance the state of the art in manufacturing systems and foster innovation in crafting efficient, robust, and sustainable manufacturing systems. The focus extends from equipment-level considerations to the broader scope of the extended enterprise. The Journal welcomes research addressing challenges across various scales, including nano, micro, and macro-scale manufacturing, and spanning diverse sectors such as aerospace, automotive, energy, and medical device manufacturing.