非连续伽勒金谱元近似双曲系统的好求过载网格问题的能量边界

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
David A. Kopriva , Andrew R. Winters , Jan Nordström
{"title":"非连续伽勒金谱元近似双曲系统的好求过载网格问题的能量边界","authors":"David A. Kopriva ,&nbsp;Andrew R. Winters ,&nbsp;Jan Nordström","doi":"10.1016/j.jcp.2024.113508","DOIUrl":null,"url":null,"abstract":"<div><div>We show that even though the Discontinuous Galerkin Spectral Element Method is stable for hyperbolic boundary-value problems, and the overset domain problem is well-posed in an appropriate norm, the energy of the approximation of the latter is bounded by data only for fixed polynomial order, mesh, and time. In the absence of dissipation, coupling of the overlapping domains is destabilizing by allowing positive eigenvalues in the system to be integrated in time. This coupling can be stabilized in one space dimension by using the upwind numerical flux. To help provide additional dissipation, we introduce a novel penalty method that applies dissipation at arbitrary points within the overlap region and depends only on the difference between the solutions. We present numerical experiments in one space dimension to illustrate the implementation of the well-posed penalty formulation, and show spectral convergence of the approximations when sufficient dissipation is applied.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"520 ","pages":"Article 113508"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy bounds for discontinuous Galerkin spectral element approximations of well-posed overset grid problems for hyperbolic systems\",\"authors\":\"David A. Kopriva ,&nbsp;Andrew R. Winters ,&nbsp;Jan Nordström\",\"doi\":\"10.1016/j.jcp.2024.113508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We show that even though the Discontinuous Galerkin Spectral Element Method is stable for hyperbolic boundary-value problems, and the overset domain problem is well-posed in an appropriate norm, the energy of the approximation of the latter is bounded by data only for fixed polynomial order, mesh, and time. In the absence of dissipation, coupling of the overlapping domains is destabilizing by allowing positive eigenvalues in the system to be integrated in time. This coupling can be stabilized in one space dimension by using the upwind numerical flux. To help provide additional dissipation, we introduce a novel penalty method that applies dissipation at arbitrary points within the overlap region and depends only on the difference between the solutions. We present numerical experiments in one space dimension to illustrate the implementation of the well-posed penalty formulation, and show spectral convergence of the approximations when sufficient dissipation is applied.</div></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":\"520 \",\"pages\":\"Article 113508\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021999124007563\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999124007563","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

我们的研究表明,尽管非连续 Galerkin 谱元法对于双曲边界值问题是稳定的,而且重叠域问题在适当的规范下也是好求的,但后者的近似能量仅在固定的多项式阶数、网格和时间下受数据约束。在没有耗散的情况下,重叠域的耦合会使系统中的正特征值在时间上积分,从而破坏稳定。通过使用上风数值通量,可以在一个空间维度上稳定这种耦合。为了提供额外的耗散,我们引入了一种新颖的惩罚方法,在重叠区域内的任意点进行耗散,并且只取决于解之间的差值。我们在一个空间维度上进行了数值实验,以说明如何实施精心设计的惩罚公式,并显示了在应用足够的耗散时近似值的频谱收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy bounds for discontinuous Galerkin spectral element approximations of well-posed overset grid problems for hyperbolic systems
We show that even though the Discontinuous Galerkin Spectral Element Method is stable for hyperbolic boundary-value problems, and the overset domain problem is well-posed in an appropriate norm, the energy of the approximation of the latter is bounded by data only for fixed polynomial order, mesh, and time. In the absence of dissipation, coupling of the overlapping domains is destabilizing by allowing positive eigenvalues in the system to be integrated in time. This coupling can be stabilized in one space dimension by using the upwind numerical flux. To help provide additional dissipation, we introduce a novel penalty method that applies dissipation at arbitrary points within the overlap region and depends only on the difference between the solutions. We present numerical experiments in one space dimension to illustrate the implementation of the well-posed penalty formulation, and show spectral convergence of the approximations when sufficient dissipation is applied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信