通过排列图网络上的矩阵连通性和条件矩阵连通性实现高可靠性

IF 0.9 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Xiao-Yan Li , Zhaoding Lin , Hongbin Zhuang , Jou-Ming Chang
{"title":"通过排列图网络上的矩阵连通性和条件矩阵连通性实现高可靠性","authors":"Xiao-Yan Li ,&nbsp;Zhaoding Lin ,&nbsp;Hongbin Zhuang ,&nbsp;Jou-Ming Chang","doi":"10.1016/j.tcs.2024.114927","DOIUrl":null,"url":null,"abstract":"<div><div>Connectivity indicators are commonly used to evaluate system fault tolerance and reliability. However, with the high demand for multi-processor systems in high-performance computing and data center networks, the number of processors is getting larger, and the network is getting more complex. Thus, traditional connectivity and other indicators are hardly competent in assessing the reliability of complex networks. The matroidal connectivity and conditional matroidal connectivity are novel connectivity metrics that measure the actual fault-tolerant capability based on the constraints of each network dimension. In this paper, we study matroidal connectivity and conditional matroidal connectivity of the <span><math><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span>-arrangement graph network <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub></math></span> from the natural perspective of the partition of edge dimension and obtain their theoretically accurate values. Moreover, we conduct numerical analysis to compare matroidal connectivity with other conditional edge connectivities in <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub></math></span>. Additionally, we explore the distribution pattern of edge failure through simulation experiments in <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub></math></span> and attain the relation of conditional matroidal connectivity related to network scales. Our investigations include two famous network classes: alternating group graphs and star graphs.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1024 ","pages":"Article 114927"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enabling high reliability via matroidal connectivity and conditional matroidal connectivity on arrangement graph networks\",\"authors\":\"Xiao-Yan Li ,&nbsp;Zhaoding Lin ,&nbsp;Hongbin Zhuang ,&nbsp;Jou-Ming Chang\",\"doi\":\"10.1016/j.tcs.2024.114927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Connectivity indicators are commonly used to evaluate system fault tolerance and reliability. However, with the high demand for multi-processor systems in high-performance computing and data center networks, the number of processors is getting larger, and the network is getting more complex. Thus, traditional connectivity and other indicators are hardly competent in assessing the reliability of complex networks. The matroidal connectivity and conditional matroidal connectivity are novel connectivity metrics that measure the actual fault-tolerant capability based on the constraints of each network dimension. In this paper, we study matroidal connectivity and conditional matroidal connectivity of the <span><math><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span>-arrangement graph network <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub></math></span> from the natural perspective of the partition of edge dimension and obtain their theoretically accurate values. Moreover, we conduct numerical analysis to compare matroidal connectivity with other conditional edge connectivities in <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub></math></span>. Additionally, we explore the distribution pattern of edge failure through simulation experiments in <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub></math></span> and attain the relation of conditional matroidal connectivity related to network scales. Our investigations include two famous network classes: alternating group graphs and star graphs.</div></div>\",\"PeriodicalId\":49438,\"journal\":{\"name\":\"Theoretical Computer Science\",\"volume\":\"1024 \",\"pages\":\"Article 114927\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304397524005449\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397524005449","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

连接性指标通常用于评估系统容错性和可靠性。然而,随着高性能计算和数据中心网络对多处理器系统的高要求,处理器数量越来越多,网络也越来越复杂。因此,传统的连通性和其他指标很难胜任复杂网络的可靠性评估。矩阵连通性和条件矩阵连通性是一种新型的连通性指标,可根据网络各维度的约束条件来衡量实际的容错能力。本文从边维度划分的自然视角出发,研究了 (n,k) 排列图网络 An,k 的矩阵连通性和条件矩阵连通性,并得到了它们在理论上的精确值。此外,我们还进行了数值分析,比较了 An,k 中的矩阵连通性和其他条件边连通性。此外,我们还通过模拟实验探索了 An,k 中边缘失效的分布模式,并得出了条件矩阵连通性与网络规模的关系。我们的研究包括两类著名的网络:交替群图和星形图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enabling high reliability via matroidal connectivity and conditional matroidal connectivity on arrangement graph networks
Connectivity indicators are commonly used to evaluate system fault tolerance and reliability. However, with the high demand for multi-processor systems in high-performance computing and data center networks, the number of processors is getting larger, and the network is getting more complex. Thus, traditional connectivity and other indicators are hardly competent in assessing the reliability of complex networks. The matroidal connectivity and conditional matroidal connectivity are novel connectivity metrics that measure the actual fault-tolerant capability based on the constraints of each network dimension. In this paper, we study matroidal connectivity and conditional matroidal connectivity of the (n,k)-arrangement graph network An,k from the natural perspective of the partition of edge dimension and obtain their theoretically accurate values. Moreover, we conduct numerical analysis to compare matroidal connectivity with other conditional edge connectivities in An,k. Additionally, we explore the distribution pattern of edge failure through simulation experiments in An,k and attain the relation of conditional matroidal connectivity related to network scales. Our investigations include two famous network classes: alternating group graphs and star graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical Computer Science
Theoretical Computer Science 工程技术-计算机:理论方法
CiteScore
2.60
自引率
18.20%
发文量
471
审稿时长
12.6 months
期刊介绍: Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信