{"title":"具有概率调度功能的群体协议中的隐私问题","authors":"Talley Amir, James Aspnes","doi":"10.1016/j.tcs.2024.114926","DOIUrl":null,"url":null,"abstract":"<div><div>The population protocol model <span><span>[2]</span></span> offers a theoretical framework for designing and analyzing distributed algorithms among limited-resource mobile agents. While the original population protocol model considers the concept of anonymity, the issue of privacy is not investigated thoroughly. However, there is a need for time- and space-efficient privacy-preserving techniques in the population protocol model if these algorithms are to be implemented in settings handling sensitive data, such as sensor networks, IoT devices, and drones. In this work, we introduce several formal definitions of privacy, ranging from assuring only plausible deniability of the population input vector to having a full information-theoretic guarantee that knowledge beyond an agent's input and output bear no influence on the probability of a particular input vector. We then apply these definitions to both existing and novel protocols. We show that the <span>Remainder</span>-computing protocol from <span><span>[9]</span></span> (which is proven to satisfy output independent privacy under adversarial scheduling) is not information-theoretically private under probabilistic scheduling. In contrast, we provide a new algorithm and demonstrate that it correctly and information-theoretically privately computes <span>Remainder</span> under probabilistic scheduling.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1024 ","pages":"Article 114926"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Privacy in population protocols with probabilistic scheduling\",\"authors\":\"Talley Amir, James Aspnes\",\"doi\":\"10.1016/j.tcs.2024.114926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The population protocol model <span><span>[2]</span></span> offers a theoretical framework for designing and analyzing distributed algorithms among limited-resource mobile agents. While the original population protocol model considers the concept of anonymity, the issue of privacy is not investigated thoroughly. However, there is a need for time- and space-efficient privacy-preserving techniques in the population protocol model if these algorithms are to be implemented in settings handling sensitive data, such as sensor networks, IoT devices, and drones. In this work, we introduce several formal definitions of privacy, ranging from assuring only plausible deniability of the population input vector to having a full information-theoretic guarantee that knowledge beyond an agent's input and output bear no influence on the probability of a particular input vector. We then apply these definitions to both existing and novel protocols. We show that the <span>Remainder</span>-computing protocol from <span><span>[9]</span></span> (which is proven to satisfy output independent privacy under adversarial scheduling) is not information-theoretically private under probabilistic scheduling. In contrast, we provide a new algorithm and demonstrate that it correctly and information-theoretically privately computes <span>Remainder</span> under probabilistic scheduling.</div></div>\",\"PeriodicalId\":49438,\"journal\":{\"name\":\"Theoretical Computer Science\",\"volume\":\"1024 \",\"pages\":\"Article 114926\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304397524005437\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397524005437","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Privacy in population protocols with probabilistic scheduling
The population protocol model [2] offers a theoretical framework for designing and analyzing distributed algorithms among limited-resource mobile agents. While the original population protocol model considers the concept of anonymity, the issue of privacy is not investigated thoroughly. However, there is a need for time- and space-efficient privacy-preserving techniques in the population protocol model if these algorithms are to be implemented in settings handling sensitive data, such as sensor networks, IoT devices, and drones. In this work, we introduce several formal definitions of privacy, ranging from assuring only plausible deniability of the population input vector to having a full information-theoretic guarantee that knowledge beyond an agent's input and output bear no influence on the probability of a particular input vector. We then apply these definitions to both existing and novel protocols. We show that the Remainder-computing protocol from [9] (which is proven to satisfy output independent privacy under adversarial scheduling) is not information-theoretically private under probabilistic scheduling. In contrast, we provide a new algorithm and demonstrate that it correctly and information-theoretically privately computes Remainder under probabilistic scheduling.
期刊介绍:
Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.