赫尔佐格型解析函数空间中高阶偏微分方程的混沌半群

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
A. Taqbibt, M. Chaib, M. Elomari, S. Melliani
{"title":"赫尔佐格型解析函数空间中高阶偏微分方程的混沌半群","authors":"A. Taqbibt,&nbsp;M. Chaib,&nbsp;M. Elomari,&nbsp;S. Melliani","doi":"10.1016/j.chaos.2024.115657","DOIUrl":null,"url":null,"abstract":"<div><div>We present comprehensive criteria for specific parameters to ensure both Devaney chaos and distributional chaos within the context of the <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-semigroup solutions associated with the Moore–Gibson–Thompson equation, which belongs to a class of higher order partial differential equations. We demonstrate that this <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-semigroup exhibits a strongly mixing measure with full support in cases of chaos. Furthermore, we provide a critical parameter that enables us to distinguish between stability and chaos within these semigroups in the Herzog-type space of analytic functions.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chaotic semigroups for a higher order partial differential equation in Herzog-type space of analytic functions\",\"authors\":\"A. Taqbibt,&nbsp;M. Chaib,&nbsp;M. Elomari,&nbsp;S. Melliani\",\"doi\":\"10.1016/j.chaos.2024.115657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present comprehensive criteria for specific parameters to ensure both Devaney chaos and distributional chaos within the context of the <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-semigroup solutions associated with the Moore–Gibson–Thompson equation, which belongs to a class of higher order partial differential equations. We demonstrate that this <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-semigroup exhibits a strongly mixing measure with full support in cases of chaos. Furthermore, we provide a critical parameter that enables us to distinguish between stability and chaos within these semigroups in the Herzog-type space of analytic functions.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077924012098\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924012098","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

我们针对与摩尔-吉布森-汤普森方程(属于高阶偏微分方程的一种)相关的 C0-半群解,提出了确保德瓦尼混沌和分布性混沌的特定参数综合标准。我们证明,在混沌的情况下,这种 C0-半群表现出具有全支持的强混合度量。此外,我们还提供了一个临界参数,使我们能够区分这些半群在赫佐格型解析函数空间中的稳定性和混沌性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chaotic semigroups for a higher order partial differential equation in Herzog-type space of analytic functions
We present comprehensive criteria for specific parameters to ensure both Devaney chaos and distributional chaos within the context of the C0-semigroup solutions associated with the Moore–Gibson–Thompson equation, which belongs to a class of higher order partial differential equations. We demonstrate that this C0-semigroup exhibits a strongly mixing measure with full support in cases of chaos. Furthermore, we provide a critical parameter that enables us to distinguish between stability and chaos within these semigroups in the Herzog-type space of analytic functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信