{"title":"新型系绳网配置与双链子弹,用于抑制完全展开后的回缩运动","authors":"","doi":"10.1016/j.actaastro.2024.10.035","DOIUrl":null,"url":null,"abstract":"<div><div>Tether-nets have attracted considerable attention as tools for capturing space debris. However, owing to the lack of aerodynamic drag to resist collapse in space, tether-nets tend to shrink back after deployment because of tension in the tether. Various strategies have been proposed to suppress this reshrinking motion before debris capture, such as equipping bullets with thruster modules to control their trajectory after ejection and incorporating a bullet ejection-angle adjustment mechanism. However, these approaches complicate the tether-net design and/or ejection systems. In this study, a novel tether-net configuration comprising double-linked bullets, wherein the inner and outer bullets are connected via a tether, was proposed to prevent the tether-net from reshrinking after full deployment. Upon full deployment, as the bullets start to rebound due to impulsive tension, the outer bullets fly outward, pulling the inner bullets and exchanging momentum to suppress their rebounding motion. The effectiveness of the double-linked bullets in suppressing the reshrinking motion of the tether-net was demonstrated by comparing the results with those obtained using typical single-linked bullets. Furthermore, the influence of the inner and outer bullet mass ratio on the tether-net deployment and reshrinking motion was numerically analyzed to identify the optimal mass ratio for effectively suppressing the reshrinking motion. The results indicate that a mass ratio of 1.0, or slightly less, between the outer and inner bullets is most effective in suppressing tether-net reshrinking.</div></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel tether-net configuration with double-linked bullets for suppressing reshrinking motion after full deployment\",\"authors\":\"\",\"doi\":\"10.1016/j.actaastro.2024.10.035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Tether-nets have attracted considerable attention as tools for capturing space debris. However, owing to the lack of aerodynamic drag to resist collapse in space, tether-nets tend to shrink back after deployment because of tension in the tether. Various strategies have been proposed to suppress this reshrinking motion before debris capture, such as equipping bullets with thruster modules to control their trajectory after ejection and incorporating a bullet ejection-angle adjustment mechanism. However, these approaches complicate the tether-net design and/or ejection systems. In this study, a novel tether-net configuration comprising double-linked bullets, wherein the inner and outer bullets are connected via a tether, was proposed to prevent the tether-net from reshrinking after full deployment. Upon full deployment, as the bullets start to rebound due to impulsive tension, the outer bullets fly outward, pulling the inner bullets and exchanging momentum to suppress their rebounding motion. The effectiveness of the double-linked bullets in suppressing the reshrinking motion of the tether-net was demonstrated by comparing the results with those obtained using typical single-linked bullets. Furthermore, the influence of the inner and outer bullet mass ratio on the tether-net deployment and reshrinking motion was numerically analyzed to identify the optimal mass ratio for effectively suppressing the reshrinking motion. The results indicate that a mass ratio of 1.0, or slightly less, between the outer and inner bullets is most effective in suppressing tether-net reshrinking.</div></div>\",\"PeriodicalId\":44971,\"journal\":{\"name\":\"Acta Astronautica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Astronautica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S009457652400609X\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Astronautica","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009457652400609X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
A novel tether-net configuration with double-linked bullets for suppressing reshrinking motion after full deployment
Tether-nets have attracted considerable attention as tools for capturing space debris. However, owing to the lack of aerodynamic drag to resist collapse in space, tether-nets tend to shrink back after deployment because of tension in the tether. Various strategies have been proposed to suppress this reshrinking motion before debris capture, such as equipping bullets with thruster modules to control their trajectory after ejection and incorporating a bullet ejection-angle adjustment mechanism. However, these approaches complicate the tether-net design and/or ejection systems. In this study, a novel tether-net configuration comprising double-linked bullets, wherein the inner and outer bullets are connected via a tether, was proposed to prevent the tether-net from reshrinking after full deployment. Upon full deployment, as the bullets start to rebound due to impulsive tension, the outer bullets fly outward, pulling the inner bullets and exchanging momentum to suppress their rebounding motion. The effectiveness of the double-linked bullets in suppressing the reshrinking motion of the tether-net was demonstrated by comparing the results with those obtained using typical single-linked bullets. Furthermore, the influence of the inner and outer bullet mass ratio on the tether-net deployment and reshrinking motion was numerically analyzed to identify the optimal mass ratio for effectively suppressing the reshrinking motion. The results indicate that a mass ratio of 1.0, or slightly less, between the outer and inner bullets is most effective in suppressing tether-net reshrinking.
期刊介绍:
Acta Astronautica is sponsored by the International Academy of Astronautics. Content is based on original contributions in all fields of basic, engineering, life and social space sciences and of space technology related to:
The peaceful scientific exploration of space,
Its exploitation for human welfare and progress,
Conception, design, development and operation of space-borne and Earth-based systems,
In addition to regular issues, the journal publishes selected proceedings of the annual International Astronautical Congress (IAC), transactions of the IAA and special issues on topics of current interest, such as microgravity, space station technology, geostationary orbits, and space economics. Other subject areas include satellite technology, space transportation and communications, space energy, power and propulsion, astrodynamics, extraterrestrial intelligence and Earth observations.