Nabiela Moolla , Helen Weaver , Rebeca Bailo , Albel Singh , Vassiliy N. Bavro , Apoorva Bhatt
{"title":"ABC 转运体 DrrABC 在结核分枝杆菌 PDIM 的输出过程中的作用","authors":"Nabiela Moolla , Helen Weaver , Rebeca Bailo , Albel Singh , Vassiliy N. Bavro , Apoorva Bhatt","doi":"10.1016/j.tcsw.2024.100132","DOIUrl":null,"url":null,"abstract":"<div><div>The <em>Mycobacterium tuberculosis</em> virulence lipid phthiocerol dimycocerosate (PDIM) is exported by a complex mechanism that involves multiple proteins including the Resistance-Nodulation-Division (RND) transporter MmpL7 and the lipoprotein LppX. Here, we probe the role of the putative heterooligomeric ATP-Binding Cassette (ABC) transporter complex composed of DrrA, DrrB and DrrC in PDIM transport by constructing a set of individual null mutants of <em>drrA</em>, <em>drrB</em> and <em>drrC</em> in the vaccine strain <em>Mycobacterium bovis</em> BCG. Loss of all three, or individual <em>drr</em> genes, all resulted in a complete loss of PDIM export to the outer envelope of the mycobacterial cell. Furthermore, guided by a bioinformatic analysis we interrogated specific signature residues within the DrrABC to demonstrate that it is indeed an ABC transporter, and our modelling, together with the mutagenesis identify it as a member of the Type V family of ABC exporters. We identify several unique structural elements of the transporter, including a non-canonical C-terminally inserted domain (CTD) structure within DrrA, which may account for its functional properties.</div></div>","PeriodicalId":36539,"journal":{"name":"Cell Surface","volume":"12 ","pages":"Article 100132"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of ABC transporter DrrABC in the export of PDIM in Mycobacterium tuberculosis\",\"authors\":\"Nabiela Moolla , Helen Weaver , Rebeca Bailo , Albel Singh , Vassiliy N. Bavro , Apoorva Bhatt\",\"doi\":\"10.1016/j.tcsw.2024.100132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The <em>Mycobacterium tuberculosis</em> virulence lipid phthiocerol dimycocerosate (PDIM) is exported by a complex mechanism that involves multiple proteins including the Resistance-Nodulation-Division (RND) transporter MmpL7 and the lipoprotein LppX. Here, we probe the role of the putative heterooligomeric ATP-Binding Cassette (ABC) transporter complex composed of DrrA, DrrB and DrrC in PDIM transport by constructing a set of individual null mutants of <em>drrA</em>, <em>drrB</em> and <em>drrC</em> in the vaccine strain <em>Mycobacterium bovis</em> BCG. Loss of all three, or individual <em>drr</em> genes, all resulted in a complete loss of PDIM export to the outer envelope of the mycobacterial cell. Furthermore, guided by a bioinformatic analysis we interrogated specific signature residues within the DrrABC to demonstrate that it is indeed an ABC transporter, and our modelling, together with the mutagenesis identify it as a member of the Type V family of ABC exporters. We identify several unique structural elements of the transporter, including a non-canonical C-terminally inserted domain (CTD) structure within DrrA, which may account for its functional properties.</div></div>\",\"PeriodicalId\":36539,\"journal\":{\"name\":\"Cell Surface\",\"volume\":\"12 \",\"pages\":\"Article 100132\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Surface\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468233024000148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Immunology and Microbiology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Surface","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468233024000148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
The role of ABC transporter DrrABC in the export of PDIM in Mycobacterium tuberculosis
The Mycobacterium tuberculosis virulence lipid phthiocerol dimycocerosate (PDIM) is exported by a complex mechanism that involves multiple proteins including the Resistance-Nodulation-Division (RND) transporter MmpL7 and the lipoprotein LppX. Here, we probe the role of the putative heterooligomeric ATP-Binding Cassette (ABC) transporter complex composed of DrrA, DrrB and DrrC in PDIM transport by constructing a set of individual null mutants of drrA, drrB and drrC in the vaccine strain Mycobacterium bovis BCG. Loss of all three, or individual drr genes, all resulted in a complete loss of PDIM export to the outer envelope of the mycobacterial cell. Furthermore, guided by a bioinformatic analysis we interrogated specific signature residues within the DrrABC to demonstrate that it is indeed an ABC transporter, and our modelling, together with the mutagenesis identify it as a member of the Type V family of ABC exporters. We identify several unique structural elements of the transporter, including a non-canonical C-terminally inserted domain (CTD) structure within DrrA, which may account for its functional properties.