{"title":"利用街景图像和混合语义图进行多层次城市街道表征","authors":"Yan Zhang , Yong Li , Fan Zhang","doi":"10.1016/j.isprsjprs.2024.09.032","DOIUrl":null,"url":null,"abstract":"<div><div>Street-view imagery has been densely covering cities. They provide a close-up perspective of the urban physical environment, allowing a comprehensive perception and understanding of cities. There has been a significant amount of effort to represent the urban physical environment based on street view imagery, and this representation has been utilized to study the relationships between the physical environment, human dynamics, and socioeconomic environments. However, there are two key challenges in representing the urban physical environment of streets based on street-view images for downstream tasks. First, current research mainly focuses on the proportions of visual elements within the scene, neglecting the spatial adjacency between them. Second, the spatial dependency and spatial interaction between streets have not been adequately accounted for. These limitations hinder the effective representation and understanding of urban streets. To address these challenges, we propose a dynamic graph representation framework based on dual spatial semantics. At the intra-street level, we consider the spatial adjacency relationships of visual elements. Our method dynamically parses visual elements within the scene, achieving context-specific representations. At the inter-street level, we construct two spatial weight matrices by integrating the spatial dependency and the spatial interaction relationships. It could account for the hybrid spatial relationships between streets comprehensively, enhancing the model’s ability to represent human dynamics and socioeconomic status. Furthermore, aside from these two modules, we also provide a spatial interpretability analysis tool for downstream tasks. A case study of our research framework shows that our method improves vehicle speed and flow estimation by 2.4% and 6.4%, respectively. This not only indicates that street-view imagery provides rich information about urban transportation but also offers a more accurate and reliable data-driven framework for urban studies. The code is available at: (<span><span>https://github.com/yemanzhongting/HybridGraph</span><svg><path></path></svg></span>).</div></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"218 ","pages":"Pages 19-32"},"PeriodicalIF":10.6000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-level urban street representation with street-view imagery and hybrid semantic graph\",\"authors\":\"Yan Zhang , Yong Li , Fan Zhang\",\"doi\":\"10.1016/j.isprsjprs.2024.09.032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Street-view imagery has been densely covering cities. They provide a close-up perspective of the urban physical environment, allowing a comprehensive perception and understanding of cities. There has been a significant amount of effort to represent the urban physical environment based on street view imagery, and this representation has been utilized to study the relationships between the physical environment, human dynamics, and socioeconomic environments. However, there are two key challenges in representing the urban physical environment of streets based on street-view images for downstream tasks. First, current research mainly focuses on the proportions of visual elements within the scene, neglecting the spatial adjacency between them. Second, the spatial dependency and spatial interaction between streets have not been adequately accounted for. These limitations hinder the effective representation and understanding of urban streets. To address these challenges, we propose a dynamic graph representation framework based on dual spatial semantics. At the intra-street level, we consider the spatial adjacency relationships of visual elements. Our method dynamically parses visual elements within the scene, achieving context-specific representations. At the inter-street level, we construct two spatial weight matrices by integrating the spatial dependency and the spatial interaction relationships. It could account for the hybrid spatial relationships between streets comprehensively, enhancing the model’s ability to represent human dynamics and socioeconomic status. Furthermore, aside from these two modules, we also provide a spatial interpretability analysis tool for downstream tasks. A case study of our research framework shows that our method improves vehicle speed and flow estimation by 2.4% and 6.4%, respectively. This not only indicates that street-view imagery provides rich information about urban transportation but also offers a more accurate and reliable data-driven framework for urban studies. The code is available at: (<span><span>https://github.com/yemanzhongting/HybridGraph</span><svg><path></path></svg></span>).</div></div>\",\"PeriodicalId\":50269,\"journal\":{\"name\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"volume\":\"218 \",\"pages\":\"Pages 19-32\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924271624003708\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271624003708","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Multi-level urban street representation with street-view imagery and hybrid semantic graph
Street-view imagery has been densely covering cities. They provide a close-up perspective of the urban physical environment, allowing a comprehensive perception and understanding of cities. There has been a significant amount of effort to represent the urban physical environment based on street view imagery, and this representation has been utilized to study the relationships between the physical environment, human dynamics, and socioeconomic environments. However, there are two key challenges in representing the urban physical environment of streets based on street-view images for downstream tasks. First, current research mainly focuses on the proportions of visual elements within the scene, neglecting the spatial adjacency between them. Second, the spatial dependency and spatial interaction between streets have not been adequately accounted for. These limitations hinder the effective representation and understanding of urban streets. To address these challenges, we propose a dynamic graph representation framework based on dual spatial semantics. At the intra-street level, we consider the spatial adjacency relationships of visual elements. Our method dynamically parses visual elements within the scene, achieving context-specific representations. At the inter-street level, we construct two spatial weight matrices by integrating the spatial dependency and the spatial interaction relationships. It could account for the hybrid spatial relationships between streets comprehensively, enhancing the model’s ability to represent human dynamics and socioeconomic status. Furthermore, aside from these two modules, we also provide a spatial interpretability analysis tool for downstream tasks. A case study of our research framework shows that our method improves vehicle speed and flow estimation by 2.4% and 6.4%, respectively. This not only indicates that street-view imagery provides rich information about urban transportation but also offers a more accurate and reliable data-driven framework for urban studies. The code is available at: (https://github.com/yemanzhongting/HybridGraph).
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.