Tianchong Gao , Hailong Fu , Shunwei Wang , Niu Zhang
{"title":"AMOUE:用于局部差分隐私数据保护的自适应修正优化单值编码方法","authors":"Tianchong Gao , Hailong Fu , Shunwei Wang , Niu Zhang","doi":"10.1016/j.compeleceng.2024.109791","DOIUrl":null,"url":null,"abstract":"<div><div>Deep learning has gained popularity recently, and privacy concerns have increased simultaneously. Adversaries gain unauthorized access to the private training data and model parameters through model inversion attacks and membership inference attacks. To address these problems, researchers proposed several defense mechanisms based on a decisive privacy criterion - Local Differential Privacy (LDP). Although the LDP-based deep learning model preserves data privacy well, its strict privacy criterion sometimes affects accuracy. It is a non-trivial task to intelligently add noise that satisfies LDP and minimizes its impact on learning results. This paper proposes a novel LDP-based deep learning method named AMOUE with a novel encoding technique. Because input data has different proportions of 1s and 0s, adding fixed noise to 1s and 0s may result in unnecessary data utility loss. The proposed encoding method dynamically adjusts the noise added on 1s and 0s according to the input data distribution. Theoretical analysis demonstrates that AMOUE has a lower error expectation and variance. Experiments on real-world datasets show that AMOUE outperforms other LDP-based mechanisms in deep learning classification accuracy.</div></div>","PeriodicalId":50630,"journal":{"name":"Computers & Electrical Engineering","volume":"120 ","pages":"Article 109791"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AMOUE: Adaptive modified optimized unary encoding method for local differential privacy data preservation\",\"authors\":\"Tianchong Gao , Hailong Fu , Shunwei Wang , Niu Zhang\",\"doi\":\"10.1016/j.compeleceng.2024.109791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Deep learning has gained popularity recently, and privacy concerns have increased simultaneously. Adversaries gain unauthorized access to the private training data and model parameters through model inversion attacks and membership inference attacks. To address these problems, researchers proposed several defense mechanisms based on a decisive privacy criterion - Local Differential Privacy (LDP). Although the LDP-based deep learning model preserves data privacy well, its strict privacy criterion sometimes affects accuracy. It is a non-trivial task to intelligently add noise that satisfies LDP and minimizes its impact on learning results. This paper proposes a novel LDP-based deep learning method named AMOUE with a novel encoding technique. Because input data has different proportions of 1s and 0s, adding fixed noise to 1s and 0s may result in unnecessary data utility loss. The proposed encoding method dynamically adjusts the noise added on 1s and 0s according to the input data distribution. Theoretical analysis demonstrates that AMOUE has a lower error expectation and variance. Experiments on real-world datasets show that AMOUE outperforms other LDP-based mechanisms in deep learning classification accuracy.</div></div>\",\"PeriodicalId\":50630,\"journal\":{\"name\":\"Computers & Electrical Engineering\",\"volume\":\"120 \",\"pages\":\"Article 109791\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Electrical Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045790624007183\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Electrical Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045790624007183","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
AMOUE: Adaptive modified optimized unary encoding method for local differential privacy data preservation
Deep learning has gained popularity recently, and privacy concerns have increased simultaneously. Adversaries gain unauthorized access to the private training data and model parameters through model inversion attacks and membership inference attacks. To address these problems, researchers proposed several defense mechanisms based on a decisive privacy criterion - Local Differential Privacy (LDP). Although the LDP-based deep learning model preserves data privacy well, its strict privacy criterion sometimes affects accuracy. It is a non-trivial task to intelligently add noise that satisfies LDP and minimizes its impact on learning results. This paper proposes a novel LDP-based deep learning method named AMOUE with a novel encoding technique. Because input data has different proportions of 1s and 0s, adding fixed noise to 1s and 0s may result in unnecessary data utility loss. The proposed encoding method dynamically adjusts the noise added on 1s and 0s according to the input data distribution. Theoretical analysis demonstrates that AMOUE has a lower error expectation and variance. Experiments on real-world datasets show that AMOUE outperforms other LDP-based mechanisms in deep learning classification accuracy.
期刊介绍:
The impact of computers has nowhere been more revolutionary than in electrical engineering. The design, analysis, and operation of electrical and electronic systems are now dominated by computers, a transformation that has been motivated by the natural ease of interface between computers and electrical systems, and the promise of spectacular improvements in speed and efficiency.
Published since 1973, Computers & Electrical Engineering provides rapid publication of topical research into the integration of computer technology and computational techniques with electrical and electronic systems. The journal publishes papers featuring novel implementations of computers and computational techniques in areas like signal and image processing, high-performance computing, parallel processing, and communications. Special attention will be paid to papers describing innovative architectures, algorithms, and software tools.