无阻尼柔性结构控制系统干扰抑制能力的可控性衡量标准

IF 3.7 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Haemin Lee
{"title":"无阻尼柔性结构控制系统干扰抑制能力的可控性衡量标准","authors":"Haemin Lee","doi":"10.1016/j.jfranklin.2024.107320","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a controllability measure for quantitatively evaluating the disturbance rejection capabilities of control systems with undamped flexible structures. The measure is derived by obtaining the steady-state solution of the degree of disturbance rejection capability (DoDR), a Gramian-based measure used to assess controllability under external disturbances. To address the issue of Gramian matrices diverging over time in undamped systems, we have developed and proven several theorems related to Gramian matrices in undamped systems. The resulting solution, derived using these theorems is represented in a closed-form and expressed in terms of the modal matrix, input matrix, disturbance matrix, and disturbance covariance matrix. Since the derived solution does not require solving Lyapunov equations, which is typically required in most Gramian-based measures, it enables efficient computations, even for high-dimensional systems. Numerical examples confirm that the proposed measure serves as an exact DoDR solution for undamped systems, preserving the previously established physical meaning of DoDR. Control simulations further validate its accuracy in predicting disturbance rejection performance, highlighting its value in actuator allocation.</div></div>","PeriodicalId":17283,"journal":{"name":"Journal of The Franklin Institute-engineering and Applied Mathematics","volume":"361 17","pages":"Article 107320"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controllability measure for disturbance rejection capabilities of control systems with undamped flexible structures\",\"authors\":\"Haemin Lee\",\"doi\":\"10.1016/j.jfranklin.2024.107320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper introduces a controllability measure for quantitatively evaluating the disturbance rejection capabilities of control systems with undamped flexible structures. The measure is derived by obtaining the steady-state solution of the degree of disturbance rejection capability (DoDR), a Gramian-based measure used to assess controllability under external disturbances. To address the issue of Gramian matrices diverging over time in undamped systems, we have developed and proven several theorems related to Gramian matrices in undamped systems. The resulting solution, derived using these theorems is represented in a closed-form and expressed in terms of the modal matrix, input matrix, disturbance matrix, and disturbance covariance matrix. Since the derived solution does not require solving Lyapunov equations, which is typically required in most Gramian-based measures, it enables efficient computations, even for high-dimensional systems. Numerical examples confirm that the proposed measure serves as an exact DoDR solution for undamped systems, preserving the previously established physical meaning of DoDR. Control simulations further validate its accuracy in predicting disturbance rejection performance, highlighting its value in actuator allocation.</div></div>\",\"PeriodicalId\":17283,\"journal\":{\"name\":\"Journal of The Franklin Institute-engineering and Applied Mathematics\",\"volume\":\"361 17\",\"pages\":\"Article 107320\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Franklin Institute-engineering and Applied Mathematics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016003224007415\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Franklin Institute-engineering and Applied Mathematics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016003224007415","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种可控性度量,用于定量评估具有无阻尼柔性结构的控制系统的干扰抑制能力。该指标通过获取干扰抑制能力度(DoDR)的稳态解得出,DoDR 是一种基于格拉米安的指标,用于评估外部干扰下的可控性。为了解决无阻尼系统中格拉米矩阵随时间发散的问题,我们开发并证明了几个与无阻尼系统中格拉米矩阵相关的定理。利用这些定理推导出的解决方案以闭合形式表示,并用模态矩阵、输入矩阵、扰动矩阵和扰动协方差矩阵表示。由于推导出的解不需要求解 Lyapunov 方程,而大多数基于格拉米安的度量通常都需要求解 Lyapunov 方程,因此即使对于高维系统,也能实现高效计算。数值示例证实,所提出的测量方法是无阻尼系统的精确 DoDR 解决方案,保留了之前确定的 DoDR 物理含义。控制模拟进一步验证了它在预测干扰抑制性能方面的准确性,突出了它在致动器分配方面的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Controllability measure for disturbance rejection capabilities of control systems with undamped flexible structures
This paper introduces a controllability measure for quantitatively evaluating the disturbance rejection capabilities of control systems with undamped flexible structures. The measure is derived by obtaining the steady-state solution of the degree of disturbance rejection capability (DoDR), a Gramian-based measure used to assess controllability under external disturbances. To address the issue of Gramian matrices diverging over time in undamped systems, we have developed and proven several theorems related to Gramian matrices in undamped systems. The resulting solution, derived using these theorems is represented in a closed-form and expressed in terms of the modal matrix, input matrix, disturbance matrix, and disturbance covariance matrix. Since the derived solution does not require solving Lyapunov equations, which is typically required in most Gramian-based measures, it enables efficient computations, even for high-dimensional systems. Numerical examples confirm that the proposed measure serves as an exact DoDR solution for undamped systems, preserving the previously established physical meaning of DoDR. Control simulations further validate its accuracy in predicting disturbance rejection performance, highlighting its value in actuator allocation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
14.60%
发文量
586
审稿时长
6.9 months
期刊介绍: The Journal of The Franklin Institute has an established reputation for publishing high-quality papers in the field of engineering and applied mathematics. Its current focus is on control systems, complex networks and dynamic systems, signal processing and communications and their applications. All submitted papers are peer-reviewed. The Journal will publish original research papers and research review papers of substance. Papers and special focus issues are judged upon possible lasting value, which has been and continues to be the strength of the Journal of The Franklin Institute.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信