{"title":"基于贪婪算法的不确定系统在线数据驱动控制","authors":"Jiahui Shen, Xinggao Liu","doi":"10.1016/j.jfranklin.2024.107335","DOIUrl":null,"url":null,"abstract":"<div><div>Considering a result that persistently exciting data can be used to replace the linear system model, this paper is devoted to applying this result in the field of data-driven control of nonlinear systems. An on-line iteration based on greedy algorithm to stabilize uncertain discrete-time systems is proposed. The method tends to obtain approximate optimal control through solving a series of programming problems. Every programming problem is linear for the convenience of solving. Besides, in particular, the method requires few prior conditions, as long as the system is controllable and observable and the equilibrium state of the system is known. First, we prove that under certain circumstances, the solution to our linear matrix inequality can stabilize the system. Next, a multi-objective programming problem is proposed to deal with situations where the required conditions are unknown. Finally, an on-line iteration is used to enhance robustness as well as real-time evaluation. The method is illustrated to be effective through a simulation under repeated experiments.</div></div>","PeriodicalId":17283,"journal":{"name":"Journal of The Franklin Institute-engineering and Applied Mathematics","volume":"361 17","pages":"Article 107335"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On-line data-driven control for uncertain systems based on greedy algorithm\",\"authors\":\"Jiahui Shen, Xinggao Liu\",\"doi\":\"10.1016/j.jfranklin.2024.107335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Considering a result that persistently exciting data can be used to replace the linear system model, this paper is devoted to applying this result in the field of data-driven control of nonlinear systems. An on-line iteration based on greedy algorithm to stabilize uncertain discrete-time systems is proposed. The method tends to obtain approximate optimal control through solving a series of programming problems. Every programming problem is linear for the convenience of solving. Besides, in particular, the method requires few prior conditions, as long as the system is controllable and observable and the equilibrium state of the system is known. First, we prove that under certain circumstances, the solution to our linear matrix inequality can stabilize the system. Next, a multi-objective programming problem is proposed to deal with situations where the required conditions are unknown. Finally, an on-line iteration is used to enhance robustness as well as real-time evaluation. The method is illustrated to be effective through a simulation under repeated experiments.</div></div>\",\"PeriodicalId\":17283,\"journal\":{\"name\":\"Journal of The Franklin Institute-engineering and Applied Mathematics\",\"volume\":\"361 17\",\"pages\":\"Article 107335\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Franklin Institute-engineering and Applied Mathematics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016003224007567\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Franklin Institute-engineering and Applied Mathematics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016003224007567","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
On-line data-driven control for uncertain systems based on greedy algorithm
Considering a result that persistently exciting data can be used to replace the linear system model, this paper is devoted to applying this result in the field of data-driven control of nonlinear systems. An on-line iteration based on greedy algorithm to stabilize uncertain discrete-time systems is proposed. The method tends to obtain approximate optimal control through solving a series of programming problems. Every programming problem is linear for the convenience of solving. Besides, in particular, the method requires few prior conditions, as long as the system is controllable and observable and the equilibrium state of the system is known. First, we prove that under certain circumstances, the solution to our linear matrix inequality can stabilize the system. Next, a multi-objective programming problem is proposed to deal with situations where the required conditions are unknown. Finally, an on-line iteration is used to enhance robustness as well as real-time evaluation. The method is illustrated to be effective through a simulation under repeated experiments.
期刊介绍:
The Journal of The Franklin Institute has an established reputation for publishing high-quality papers in the field of engineering and applied mathematics. Its current focus is on control systems, complex networks and dynamic systems, signal processing and communications and their applications. All submitted papers are peer-reviewed. The Journal will publish original research papers and research review papers of substance. Papers and special focus issues are judged upon possible lasting value, which has been and continues to be the strength of the Journal of The Franklin Institute.